

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Step by Step Guide.

Bernie Crumbs

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Setting up Construct 3
Construct only works in Google Chrome - if you are using Internet Explorer you will
need to change browser.

Construct 3 runs right in your browser! There is nothing to install or set up. If you
see an error, check the system requirements page, you might need to update your
browser or system.

Create a new project
Click the New project button. A dialog will appear asking for some details. You
don't have to change anything, but you can type in a name for your project if you
like (how about My super awesome game?). Click Create and you should see a new
empty project something like this.

A new empty project in Construct 3

Note about screenshots: we're using the default theme in Construct 3 for images. If
you change the theme, or Construct 3 looks a little different, don't worry - it should
still be straightforward to follow along.

The main view in the middle of the screen is the layout view. This is the design view
where you create and position objects. Think of a layout like a game level or menu
screen. In other tools, this might have been called a room, scene or frame

https://www.construct.net/make-games/manuals/construct-3/getting-started/system-requirements
https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1097/new-project-view.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

How to save your work
NOTE: Download a Copy will automatically save to your Downloads folder - you
must move this into your computer science folder at the end of each lesson
otherwise you will lose your work. I have explained how to do this below.

Probably the most important thing to remember when using Construct 3 is to save
your work regularly!

Two ways to save – download a Copy:

It is easy to save - click on Menu > Project > Save As > Download a Copy

Download a copy will save into your Download folder - this is cleared out each
evening - to save permanently you must move your work into your Computer
Science Folder.

To do this minimise your browser window by pressing the minus (-) sign on the top
right of the page.

Open My Documents and go to your Computer Science folder. Open another My
Documents window and go to your Downloads folder. Drag and drop your game
file into your Computer Science folder:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Make sure you remember to move your saves to your own folder at the end of each
lesson!

Or click on Cloud save and sign into your OneDrive or DropBox account to save to
these locations.

How to load your work from a previous
lesson

Launch Construct3 go to:

https://editor.construct.net/

Click on File:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

A browse to file window will pop up - go to your Computer Science folder and open
the most recent version of your game file (look at the date modified).

If you have used Cloud save click on cloud, sign in and browse to the location you
saved your game into.

That's it - continue with your game. Remember to save your work regularly and
don't forget to move your work from downloads into your Computer Science folder
at the end of the lesson.

Add the input objects
Double-click in a space (this can be anywhere since the background is locked) to
add a new object. Select the Keyboard object, since we'll need keyboard input:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Note that this object doesn't need placing in the layout. It is hidden, and
automatically works across the entire project. Now all layouts in our project can
accept keyboard input

The game objects
It's time to add our game objects! First we are going to add the idle animation for
our Bernie Crumbs sprite.

To do this we will add a Sprite object.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Sprites simply display an image, which you can move about, rotate, resize and
optionally animate. Games are generally composed mostly out of sprite objects.

When the mouse turns to a crosshair, click somewhere in the layout to place Bernie
Crumbs. The image editor pops up. Click the Load image button (folder icon), and
select the first of the Toaster idle images:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Next we are going to animate the sprite, to do this we need to add more frames.
Right click next to frame 0 in the Animation pane at the bottom of the editor and
click on Import Frames > From Files

Select the rest of the idle animation frames from the Bernie Crumbs assets pack
you will find on your USB stick, you can select a series of images by selecting the
first image and then selecting the last image while holding the shift key:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Finally, we will change some of the animation properties as shown:

Right click on the name of the animation and rename it to idle:

You can

Then right click again and click on preview to check that the animation is playing at
the correct speed (frame rate):

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

It’s a good idea to remove any excess space around your sprite as this will help with
collisions later, to do this click on the arrow next to the crop tool and then select
apply to animation:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Close the image editor by clicking the X in the top right-hand corner. You should
now see the object in the layout!

The image is a little too big! Use the bounding box that appears when the object is
selected to resize your image:

Another quick way to create sprite objects is to drag and drop an image file into the
layout view. Construct will create a Sprite with that image for you. If you drag
multiple files in at once, Construct will make a single sprite with the rest of the files
as animation frames.

Your Bernie Crumbs sprite will be called Sprite as default. That's not very useful -
things will quickly get confusing like this. Rename your sprite to Bernie Crumbs.
You can do it by selecting the object, then changing the Name property in the
properties bar:

https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1107/rename-object.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

(If you're impatient like me, click the Previewbutton in the main toolbar - the
preview window should pop up showing your animated Bernie Crumbs idle
animation! Woo!)

Tilemap
For this game we are going to use a tilemap for the background.

Now, double click a space in the layout to create a new object. (Later, if it's full, you
can also right-click and select Insert new object.) Once the Create new
object dialog appears, double click the Tilemap object.

The mouse will turn in to a crosshair for you to indicate where to place the object.
Click somewhere near the middle of the layout. The image editor now opens for
you to import the Tilemap you want to use. We are going to use Construct3’s
default Tilemap that is included as standard (if you wanted to import a new Tilemap
click on the Folder icon to import a new Tilemap as shown below).

https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1100/load-image.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Once you have added your tilemap, close the image editor by clicking the X in the
top-right. Now you should see your Tilemap on the bottom right side of the screen:

To draw tiles, select the tile you want to use and then select the draw tool:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Let's zoom out. Hold Control and scroll the mouse wheel down to zoom out.

Alternatively, right-click and select View►Zoom out a couple of times. You can
also hold Space bar, or the middle mouse button, to pan around.

The dotted line you can see is called the viewport, this is the area that will be visible
when you play the game.

Click in the viewport to place the tiles where you want them. To change to a
different tile, simply select a new tile from the tilemap in the bottom right hand
corner.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Zoomed out view of completed maze in layout

Hit Ctrl + 0 or right-click and select View►Reset zoom to return to 1:1 view.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

To stop editing the tilemap, click on the arrow to return to normal layout view, this
will allow you to add and edit more objects:

Before we continue, the tilemap background should be locked. As we create and
move around objects on top of it, it's easy to accidentally select or modify the
background. Since we don't need to change the background anymore, locking it
makes it unselectable, so it won't get in the way. To lock it, right-click on the tiled

background and select Lock►Lock selection. (If you do want to change it later,

simply right-click and select Lock►Unlock all.)

Behaviours
Behaviors are quick ways to make an object act a certain way. For example, you
can add a Platform behavior to an object, and the Solid behavior to the floor, and
you instantly can jump around like a platformer game. You can usually do the same
in events, but behaviors are much quicker! Construct has a wide range of
behaviors, but here are a few that we'll use in this game.

• 8 Direction movement: this lets you move an object around with the arrow
keys. It will do nicely for Bernie Crumbs's movement.

• Bullet movement: this simply moves an object forwards at its current angle.
Despite the name, it will work nicely to move the enemies around - since all
the movement does is move objects forwards at some speed.

• Wrap: this makes an object appear on the other side of the screen when they
leave the on opposite side. This will be useful to make Bernie Crumbs able to
'run' through the centre of the screen and appear at the otherside.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

• Fade: this makes an object fade out, which we will use on toast that Bernie
Crumbs eats.

Let's add these behaviors to the objects that need them.

How to add a behaviour
Let's add the 8 direction movement behavior to Bernie Crumbs. Click the Bernie
Crumbs object to select it. In the Properties Bar, notice the Behaviors category.
Click the Behaviors link there. The Behaviors dialog for Bernie Crumbs will open.

The Behaviors dialog

Click Add new behavior in the behaviors dialog. Double-click the 8 direction
movement to add it.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Close the dialogue box, select the Bernie Crumbs object and find the 8-direction
movement properties in the Properties bar. Change the properties of Bernie
Crumbs’s 8-direction movement as follows:

Now add the Wrap behavior, to make Bernie Crumbs appear at the opposite side of
the screen from where he leaves it. The behaviors dialog should now look like this:

https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1109/add-8dir.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Close the behaviors dialog. There is one last thing we need to do to make the wrap
work correctly. Select the Bernie Crumbs object and find the Wrap properties in
the Properties bar. Change it to Wrap to Viewport.

Now try pressing Preview to run the game so far! Once the preview starts, notice
you can already move around with the arrow keys. You also appear on the
otherside of the screen if you walk outside the layout area, thanks to the Wrap
behavior. This is what behaviors are good for - quickly adding common features.
We'll be using the event system soon to add custom features.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Creating a maze for Bernie Crumbs to
navigate
We already have a maze in the tilemap background but currently Bernie Crumbs
can walk through it. In this section we will make invisible wall sprites that Bernie
Crumbs can’t walk through.

Right click and create a new sprite as you did before, when the animations editor
opens leave the frame blank and close the editor:

This will create an invisible sprite, resize the sprite to fit over part of the maze:

You can copy and paste the sprite in the layout to create a second instance of it (a
cross hair will appear to allow you to place it), use these instances of your invisible
sprite to cover all the walls of your maze:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

You might like to rename the original sprite ‘wall’ in the project toolbar on the right:

Add the Solid behaviour to each of the instances of your invisible wall by adding it
to the original wall object by right clicking it in the project toolbar:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

And that's it! Create yourself a maze for your Bernie Crumbs to work his way
through!

Adding toast
Next add the toast sprite from the game assets folder using the same steps as you
did for adding Bernie Crumbs:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Adding the other behaviours
We can add behaviors to the other objects by the same method - select the object,
click the Behaviors link to open the behaviors dialog, and add some behaviors. Let's
add this behavior:

1. Add the Fade behavior to the Toast object (so it gradually disappears if eaten
by Bernie Crumbs). By default the Fade behavior also destroys the object
after it has faded out, which also saves us having to worry about
invisible Toast objects clogging up the game.

If you run the game, you might notice that any Toast suddenly disappears. To sort
that out, select your toast. Find the Fade properties in the properties bar and
uncheck Enabled:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

The Enabled property controls whether the fade starts straight away when the
game is loaded or as a result of something else happening.

Now it's time to add our custom logic with Construct's visual method of
programming - events!

Events
First, click the Event sheet 1 tab at the top to switch to the Event Sheet View. A list
of events is called an Event sheet, and you can have different event sheets for
different parts of your game, or for organisation. Event sheets can also "include"
other event sheets, allowing you to reuse events on multiple levels for example, but
we won't need that right now.

ABOUT EVENTS

As the text in the empty sheet indicates, Construct runs everything in the event
sheet once per tick. Most screens update their display 60 times per second, so
Construct will try to match that for the smoothest display. This means the event
sheet is usually run 60 times per second, each time followed by redrawing the
screen. That's what a tick is - one unit of "run the events then draw the screen".

Events run top-to-bottom, so events at the top of the event sheet are run first.

CONDITIONS, ACTIONS AND SUB-EVENTS

Events consist of conditions, which test if certain criteria are met, e.g. "Is spacebar
down?". If all these conditions are met, the event's actions are all run, e.g. "Create a
bullet object". After the actions have run, any sub-events are also run - these can

https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1113/event-sheet-tab.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

then test more conditions, then run more actions, then more sub-events, and so on.
Using this system, we can build sophisticated logic for our games and apps. We
won't need sub-events in this tutorial, though.

Let's go over that again. In short, an event basically runs like this:

Are all conditions met?

• Yes: run all the event's actions.

• No: go to next event (not including any sub-events).

That's a bit of an oversimplification. Construct provides a lot of event features to
cover lots of different things you might need to do. However, for now, that's a good
way to think about it.

Your first event
We want to make the Toast objects disappear if they are touched by a Bernie
Crumbs object. To do this we need to make an event, it will look like this when we
are done:

Let's start making this event. Double-click a space in the event sheet. This will
prompt us to add a condition for the new event. Different objects have different
conditions and actions depending on what they can do. There's also the System
object, which represents Construct's built-in features. Double-click the Toast
object as shown.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

The dialog will then list all the Toast object's conditions. Double-click the On
collision with another object condition to create an event with it:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

You will then be asked to select the object to test for a collision with - select Bernie
Crumbs. The object to test for a collision with is called the parameter of the
condition. Actions can have parameters too.

Click Done on the parameters dialogue. The dialog will close and the event is
created, with no actions.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Now we want to add an action to make the Toast object fade if Bernie Crumbs
collides with it. Click the Add action link to the right of the event. (Make sure you
get the Add action link, not the Add event link underneath it which will add a whole
different event again.) The Add Action dialog will appear. As with adding an event,
we have our same list of objects to choose from, but this time for adding an action.
Try not to get confused between adding conditions and adding actions!

As shown, double-click the Toast object, as it is the Toast we want to fade out:

The list of actions available in the Toast object appears. Notice how the toast's fade
behavior has its own actions. Select Start fade:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Click Done on the parameters dialog. The action is added! As you saw before, it
should look like this:

There's your first event! Try running the game, and Bernie Crumbs should now be
able to move around as before, but the Toast fades if Bernie Crumbs collides with
it. This is our first bit of custom logic.

Create some more toast
Holding Control, click and drag the Toast object. You'll notice it creates
another instance. This is simply another object of the Toast object type.

Object types are essentially 'classes' of objects. In the event system, you mainly
deal with object types. We've already made an event that says "Toast collides with
Bernie Crumbs". This actually means "Any instance of the Toast object type collides

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

with any instance of the Bernie Crumbs object type" - as opposed to having to
make a separate event for each and every toast. We'll cover more on object types
vs. instances later. For now, a good example to think about is different types
of food are different object types, then the actual food items themselves (which
there might be several of) are instances of those object types.

Using Control + drag, create 7 or 8 pieces of toast. Don't place any too close to
Bernie Crumbs, or they might disappear straight away! Remember you can zoom
out with Control+ mouse wheel down if it helps, and spread them over the whole
layout. You should end up with something a bit like this.

Preview your game again - Bernie Crumbs should be able to eat all those pieces of
toast!

Adding enemys
Next we need to add an enemy for Bernie Crumbs, of course the obvious enemy for
a toaster is water! Add a new sprite and use the animations editor to design a
splash of water, name the new sprite object water:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Use the frame editor at the bottom of the window to create an animation to make
your water appear to move, you may like to turn on onion skinning so you can see
the previous frames as you draw a new one:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Click on the name of your animation (in this case Animation 1) and experiment with
different settings until your animation looks right:

Add enemy behaviours
Add the Bullet movement and Wrap (don't forget to change to Wrap to
Viewport) to the Water object (because it just moves forwards at a slowish speed)

If you run the game, you might notice that any Water you can see suddenly shoot
off rather quickly!

Let's start by slowing down the Water to a leisurely pace. Select the Water object.
Notice how since we added a behavior, some extra properties have appeared in the
properties bar:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

This allows us to tweak how behaviors work. Change the speed from 400
to 80 (this is in pixels travelled per second).

More game logic
If each event is described in as much detail as before, it's going to be quite a long
tutorial. Let's make the description a little briefer for the next events. Remember,
the steps to add a condition or action are:

1. Double-click to insert a new event, or click an Add action link to add an
action.

2. Double-click the object the condition/action is in.

3. Double-click the condition/action you want.

4. Enter parameters, if any are needed.

From now on, events will be described as the object, followed by the
condition/action, followed by any parameters. For example, the event we have just
inserted could be written:

Add condition Toast►On collision with another object, and for Object: Bernie
Crumbs

Add action Toast►Start fade

Destroy Bernie Crumbs if hit by a water
When a Water hits Bernie Crumbs he should be destroyed and the game ends. This
can be done with the Destroy action in Bernie Crumbs, which destroys the instance
of Bernie Crumbs that collided with a Water object.

Make the following event:

https://s1.construct.net/images/v347/uploads/articleuploadobject/0/images/1111/bullet-properties.png

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Condition: Water►On collision with another object►Bernie Crumbs

Action: Bernie Crumbs►Destroy

Your event should now look like this:

Add game over text
If you run the game Bernie Crumbs is destroyed if he is hit by a Water but there is
no GAME OVER to tell you what is going on. Let's fix that by making the GAME
OVER text appear if Bernie Crumbs is destroyed.

To do this we are going to add a new object, this time we will add the spritefont
object:

Click in the layout roughly where you want the Game Over! text to be, the
animation editor will open and look like this:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Don’t make any changes, just close the animations editor. Double click where the
word text has appeared in the layout, edit the text to say Game Over!:

Move the Game Over sprite to somewhere off the edge of the layout - we don't
want to see it when the game starts.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Go back to the events tab and click on add action below the destroy Bernie Crumbs
action (yes you can add more than one action to a condition), add the following
action:

Add action Game Over►Set position to, and for X: 427, Y: 240 (this will make the
Game Over object appear in the centre of the viewport)

Your event should now look like this:

Test your game again - you should now find that when Bernie Crumbs is destroyed,
your Game Over object appears in the centre of the screen.

Making your water follow a path around
your maze using waypoints
At the moment the water sprite just bounces around and its really just chance if it
begins to move around the maze, to make the water appear to chase Bernie
Crumbs we need to use some Artificial Intelligence. Artificial Intelligence (or AI for
short) sounds really fancy but really it’s just making things in your game appear like
they have some intelligence and can think for themselves.

In the original Pacman all of the Ghosts appeared to chase Pacman around the
maze - in fact they followed set routes that each repeated over and over again -
except when they were turned into blue Ghosts but we can worry about that later.
We call follow instructions like this an algorithm.

The way we will be doing this is by using waypoints - in other words using sprites
as points that the Water must touch to make it appear to follow a route.

Go back to the layout tab and add a sprite that is a coloured square. You can do
this by double clicking on the background and filling the square with the colour
required. Name the square 'waypointBlue' (or whatever colour your square is).

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Now you are going to create instance variables which will be used to control the
movement of your water. With your square still selected add the instance variable
'ID', leaving its initial value as 0:

Create a second instance variable called 'NextID' again leave the initial value as 0.

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Now use ctrl and click and drag to create multiple copies of your waypointBlue
sprite:

Change the instance variable ID of each of your waypointBlue sprites to the
numbers 0,1,2 etc. in the order they should be visited by your water. Then set each
of the nextID variables to one more than the ID set for that instance:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Set the nextID of the last of your waypointBlue sprite to 0. This means that when
your water follows the path it will loop back to the beginning again:

Select your water sprite and then add an instance variable called targetID, leave
the initial value as 0:

Select the event sheet tab.

You will need to add two events.

This is the first:

Add condition waypointBlue►Compare instance variable, leave Instance variable
as ID (number) and Comparison as = Equal to. Set Value to: water.targetID

Add action water►Set angle of motion, and for Angle: angle (water.X, water.Y,
waypointBlue.X, waypointBlue.Y)

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

This is the second:

Add first condition water►On collision with another object, and for
Object: waypointBlue

Add second condition waypointBlue►Compare instance variable, leave Instance
variable as ID (number) and Comparison as = Equal to. Set Value to: water.targetID

Add action water►Set value, and for Instance variable set targetID
(number): waypointBlue.nextID

Your events should look like this:

Test your game and you should find that your water follows your waypoints.

To make your waypoints invisible just double click on one of them and remove your
fill by using the eraser tool. You can also experiment with making the wayPoints
smaller and editing the collision polygon:

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Computing Programmes of Study Links

This tutorial covers the following content from the KS3 National Curriculum
Programme of Study for Computing:

Key stage 3

Pupils should be taught to:

• design, use and evaluate computational abstractions that model the state
and behaviour of real-world problems and physical systems

• understand several key algorithms that reflect computational thinking [for
example, ones for sorting and searching]; use logical reasoning to compare
the utility of alternative algorithms for the same problem

• use 2 or more programming languages, at least one of which is textual, to
solve a variety of computational problems; make appropriate use of data
structures [for example, lists, tables or arrays]; design and develop modular
programs that use procedures or functions

• understand simple Boolean logic [for example, AND, OR and NOT] and some
of its uses in circuits and programming;

• undertake creative projects that involve selecting, using, and combining
multiple applications, preferably across a range of devices, to achieve
challenging goals, including collecting and analysing data and meeting the
needs of known users

• create, reuse, revise and repurpose digital artefacts for a given audience,
with attention to trustworthiness, design and usability

• understand a range of ways to use technology safely, respectfully,
responsibly and securely, including protecting their online identity and
privacy; recognise inappropriate content, contact and conduct, and know
how to report concerns

It also covers the following competencies from Computing at School’s Progression
Pathways:

 Algorith
ms

Programmi
ng

Data
Representa
tion

Hardware
and
Processin
g

Communica
tion and
Networks

IT

Pink Understan

ds that

computers

need

precise

instruction

s. (AL)

Demonstr

ates care

Knows that

users can

develop

their own

programs,

and can

demonstrate

this by

creating a

Recognises

that digital

content can

be

represented

in many

forms. (AB)

(GE)

Understan

ds that

computers

have no

intelligence

and that

computers

can do

nothing

unless a

Obtains

content from

the world

wide web

using a web

browser (AL)

Uses

software

under the

control of the

teacher to

create,

store and edit

digital

content using

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

and

precision

to avoid

errors.

(AL)

simple

program

in an

environmen

t that does

not rely on

text

e.g.

programma

ble robots

etc. (AL)

Executes,

checks and

changes

programs.

(AL)

Understand

s that

programs

execute by

following

precise

instructions.

(AL)

program is

executed.

(AL)

Recognises

that all

software

executed

on digital

devices is

programm

ed. (AL)

(AB) (GE)

appropriate

file and

folder names.

(AB) (GE)

(DE)

Understands

that people

interact with

computers

Knows

common

uses of

information

technology

beyond

the

classroom.

(GE)

Yellow Understan

ds that

algorithms

are

implement

ed

on digital

devices as

programs.

(AL)

Designs

simple

algorithms

using

loops, and

selection

i.e. if

statement

s. (AL)

Uses

logical

reasoning

to predict

outcomes.

(AL)

Detects

and

Uses

arithmetic

operators, if

statements,

and

loops,

within

programs.

(AL)

Uses logical

reasoning to

predict the

behaviour

of

programs.

(AL)

Detects and

corrects

simple

semantic

errors i.e.

debugging,

in

programs.

(AL)

Recognises

different

types of data:

text, number.

(AB) (GE)

Appreciates

that

programs

can work

with different

types of data.

(GE)

Recognises

and can

use a range

of

input and

output

devices

Navigates the

web and can

carry out

simple web

searches to

collect digital

content. (AL)

(EV)

Demonstrates

use of

computers

safely

and

responsibly,

knowing a

range of

ways to

report

unacceptable

content and

contact when

online.

Uses

technology

with

increasing

independenc

e to

purposefully

organise

digital

content. (AB)

Shows an

awareness

for the

quality of

digital

content

collected.

(EV)

Uses a

variety of

software to

manipulate

and present

digital

content: data

and

information.

(AL)

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

corrects

errors i.e.

debugging

, in

algorithms

. (AL)
Orang
e

 Creates

programs

that

implement

algorithms

to

achieve

given goals.

(AL)

Declares

and assigns

variables.

(AB)

Uses post-

tested loop

e.g. ‘until’,

and a

sequence of

selection

statements

in

programs,

including an

if, then and

else

statement.

(AL)

 Knows that

computers

collect data

from

various

input

devices,

including

sensors

and

application

software.

(AB)

Understands

the difference

between the

internet and

internet

service e.g.

world

wide web.

(AB)

Shows an

awareness of,

and can use a

range of

internet

services e.g.

VOIP.

Recognises

what is

acceptable

and

unacceptable

behaviour

when using

technologies

and online

services.

Collects,

organises

and presents

data and

information

in

digital

content. (AB)

Creates

digital

content to

achieve a

given goal

through

combining

software

packages and

internet

services to

communicate

with a wider

audience e.g.

blogging.

(AL)

Blue Selects,

combines and

uses internet

services. (EV)

Demonstrates

responsible

use of

technologies

and online

services, and

knows a

range of ways

to report

concerns.

Makes

judgements

about digital

content when

evaluating

and

repurposing

it for a given

audience.

(EV)

(GE)

Recognises

the audience

when

designing

and creating

digital

content. (EV)

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

Purple Understan

ds that

iteration is

the

repetition

of

a process

such as a

loop. (AL)

Uses a

range of

operators

and

expressions

e.g.

Boolean,

and applies

them in the

context of

program

control. (AL)

Selects the

appropriate

data types.

(AL) (AB)

 Knows that

there is a

range of

operating

systems

and

application

software

for the

same

hardware.

(AB)

 Evaluates the

appropriaten

ess of digital

devices,

internet

services and

application

software to

achieve given

goals. (EV)

Red Understan

ds a

recursive

solution to

a

problem

repeatedly

applies

the same

solution

to smaller

instances

of the

problem.

(AL) (GE)

 Uses

technologies

and online

services

securely, and

knows how to

identify and

report

inappropriate

conduct. (AL)

Justifies the

choice of and

independentl

y combines

and uses

multiple

digital

devices,

internet

services and

application

software to

achieve given

goals. (EV)

Evaluates the

trustworthine

ss of digital

content and

considers the

usability of

visual design

features

when

designing

and creating

digital

artifacts for a

known

audience.

(EV)
Black Considers the

properties of

media when

importing

them

into digital

artefacts.

(AB)

Digital Schoolhouse, 18a Blackbull Yard, 24-28 Hatton Wall, London EC1N 8JH.
Copyright © 2019 Digital Schoolhouse. All rights reserved.

White Understand

s and uses

two

dimensional

data

structures.

(AB) (DE)

