
View online: https://www.construct.net/en/make-games/manuals/addon-sdk

Welcome to the Construct 3 JavaScript SDK documentation. The JavaScript SDK
allows third-party developers to create new addons for Construct 3. This includes:

Plugins: new kinds of object that appear in the Create new object dialog, with
their own actions, conditions and expressions. Plugins are ideal for integrating
third-party services, and are written in JavaScript. There are also two ways
plugins can provide enhanced platform integration, accessing features not
normally available in browsers:

Plugins can specify a Cordova plugin dependency for enhanced integration
on mobile. See Specifying dependencies for more details.

Plugins can bundle a wrapper extension for enhanced integration on
desktop. See the guide on wrapper extensions for more details.

Behaviors: new kinds of behaviors that appear in the Add behavior dialog, with
their own behavior actions, conditions and expressions that get added to the
object the behavior is added to. This can be used for creating new rapid
prototyping features, or advanced gameplay logic that integrates with event
sheets, and are written in JavaScript.

Effects: new kinds of visual effects that appear in the Add effect dialog. These
are custom fragment shaders written in GLSL for WebGL and WGSL for
WebGPU.

Themes: allow custom appearances for the Construct 3 editor, using additional
CSS stylesheets to change the default editor appearance.

The Addon SDK files are hosted on the Construct Addon SDK GitHub repository.
Follow the link, click the green Code button, and select Download ZIP to
download a copy of the files.

There are sample files for example custom plugins, behaviors, effects and
themes. The files for an addon can be zipped and renamed .c3addon to directly
test it in the Construct 3 editor, via the Addon Manager.

While developing addons, be sure to use Developer Mode with a local HTTP
server. It makes it much quicker to test since you don't need to keep creating
.c3addon files, and much easier to fix problems, which otherwise can prevent

Revision 38 Page 1/200

https://www.construct.net/en/make-games/manuals/addon-sdk
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/guide/wrapper-extensions
https://www.construct.net/out?u=https%3a%2f%2fgithub.com%2fScirra%2fConstruct-Addon-SDK
https://www.construct.net/make-games/manuals/addon-sdk/guide/c3addon-file
https://www.construct.net/make-games/manuals/addon-sdk/guide/using-developer-mode

Construct 3 from starting up.

The plugin SDK includes a sample plugin using the Custom Importer API. The
included file customImporterSampleData.zip can be drag-and-dropped in to
Construct 3 to demonstrate reading a custom format.

Only the documented features are supported in the SDK. Do not use
undocumented features - they could change or be removed at any time.
Additionally third-party developers should heed any warnings logged to the
browser console about deprecated or unsupported features. In these case
features are likely to be removed, and you should take action sooner rather
than later.

The Addon SDK documentation assumes you have a basic knowledge of
JavaScript. A basic knowledge of HTML and CSS may also be useful. This
documentation does not attempt to teach you these technologies. If you're just
starting out, we recommend the MDN web docs as a good place to start. It
provides thorough documentation on all aspects of the web platform, and also
includes guides for learning web development.

Revision 38 Page 2/200

https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2f

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/c3addon-
file

Construct 3 addons are distributed as a .c3addon file. This is simply a .zip file
renamed to end with .c3addon. You can rename a .c3addon file to .zip and inspect
its contents, or create a .c3addon file by zipping some files and renaming it.

The files in a .c3addon for a plugin are arranged as follows. Note some features
allow extra files to be added, but this is the minimal file structure for an empty
plugin/behavior.

c3runtime/ — subfolder for Construct 3 runtime files.

lang/en-US.json — language file containing strings shown in the user interface.
This is kept in a separate file to facilitate translation.

aces.json — JSON data file that defines actions, conditions and expressions.

addon.json — JSON data file with metadata about the addon.

icon.svg — addon icon.

plugin.js or behavior.js — class representing the plugin or behavior.

type.js — class representing an object type of the plugin, or behavior type of
the behavior, in the editor.

instance.js — class representing an instance of the plugin, or behavior instance
of the behavior, in the editor.

The basic metadata about your addon, such as its ID and type, is set in
addon.json. See Addon metadata for more information.

For plugins, the detailed information about the plugin and its capabilities is set in
plugin.js. See Configuring plugins for more information.

For behaviors, the detailed information about the behavior and its capabilities is
set in behavior.js. See Configuring behaviors for more information.

Revision 38 Page 3/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/c3addon-file
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-behaviors

For effects, the detailed information about the effect and its capabilities is set
using extra properties in addon.json. The effect itself is written in a .fx file. See
Configuring effects for more information.

To define your plugin or behavior's actions, conditions and expressions (ACEs),
they must be specified in aces.json and the corresponding language strings added
in en-US.json. (Currently the language file must be in US English, but the fact it is
in a separate file will help facilitate translation in future.)

For more information see Defining actions, conditions and expressions.

Revision 38 Page 4/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects
https://www.construct.net/make-games/manuals/addon-sdk/guide/defining-aces

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/addon-
metadata

The metadata for your addon, specifying details like its ID and type, is defined by
addon.json. An example is shown below.

{
 "is-c3-addon": true,
 "type": "plugin",
 "name": "My custom plugin",
 "id": "MyCompany_MyAddon",
 "version": "1.0.0.0",
 "author": "Scirra",
 "website": "https://www.construct.net",
 "documentation": "https://www.construct.net",
 "description": "Example custom Construct 3 plugin.",
 "editor-scripts": [
 "plugin.js",
 "type.js",
 "instance.js"
],
 "file-list": [
 "c3runtime/plugin.js",
 "c3runtime/type.js",
 "c3runtime/instance.js",
 "c3runtime/conditions.js",
 "c3runtime/actions.js",
 "c3runtime/expressions.js",
 "lang/en-US.json",
 "aces.json",
 "addon.json",
 "icon.svg",
 "instance.js",
 "plugin.js",
 "type.js"
]
}

Note some of the information is duplicated elsewhere in the addon's files. This is
because the editor reads this file before it loads any other files when asking the

Revision 38 Page 5/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/addon-metadata

user if they want to install the addon. Note information specified here, such as the
ID, must exactly match everywhere else it is used.

The addon SDK provides a JSON schema to help you write addon.json files, as it
provides autocomplete and validation in compatible editors.

Each field and its possible values are described below.

is-c3-addon
Boolean set to true . This is used by Construct 3 to identify valid addons.

type
One of "plugin" , "behavior" , "effect" or "theme" , indicating
the kind of addon this is.

name
The displayed name of the addon, in English.

id
The unique ID of the addon. This is not displayed and is only used internally.
This must not be used by any other addon ever published for Construct 3, and
must never change after you first publish your addon. (The name is the only
visible identifier of the addon in the Construct 3 editor, so that can be changed
any time, but the ID must always be the same.) To ensure it is unique, it is
recommended to use a vendor-specific prefix, e.g. MyCompany_MyAddon . It
must match the ID set in plugin.js.

version
A string specifying the addon version in four parts (major, minor, patch,
revision). Be sure to update this when releasing updates to your addon. It must
match the version set in plugin.js/behavior.js.

author
A string identifying the author of the addon.

website
A string of a URL to the author's website. It is recommended to provide updates
to the addon at this URL if any become available. The website should use
HTTPS.

documentation
A string of a URL to the online documentation for the addon. It is important to
provide documentation for your addon to be useful to users.

Revision 38 Page 6/200

description
A string of a brief description of what the addon does, displayed when
prompting the user to install the addon.

editor-scripts
For plugins and behaviors only. An array of script files in the addon package to
load in the editor. It is recommended to leave this at the default unless you
have large editor dependency scripts, or if you want to minify your addon in to a
single script. Note themes do not use editor scripts.

stylesheets
For themes only. An array of CSS files in the addon package to apply to the
document. These are the CSS files that define the theme's appearance.

file-list
For developer mode addons only. A list of all files used by the addon. This is
required for Developer Mode addons since there is no other mechanism for
Construct to determine the list of files when serving files from a web server. Be
sure to update this property if you add, rename or remove any files in your
addon.

When developing an effect addon, additional information about the effect is
included in the addon.json file. For more information see Configuring effects.

Revision 38 Page 7/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/guide/configuring-plugins

The main configuration for a plugin is set in plugin.js.

The following constants are defined in the file-level scope:

 const PLUGIN_ID = "MyCompany_MyAddon";
 const PLUGIN_VERSION = "1.0.0.0";
 const PLUGIN_CATEGORY = "general";

The ID and version constants must match the values specified in addon.json.

PLUGIN_ID
This is a unique ID that identifies your plugin from all other addons. This must
not be used by any other addon ever published for Construct 3. It must never
change after you first publish your addon. (The name is the only visible
identifier of the addon in the Construct 3 editor, so that can be changed any
time, but the ID must always be the same.) To ensure it is unique, it is
recommended to use a vendor-specific prefix, e.g. MyCompany_MyAddon .

PLUGIN_VERSION
A string specifying the addon version in four parts (major, minor, patch,
revision). Be sure to update this when releasing updates to your addon, which
must also be updated in addon.json.

PLUGIN_CATEGORY
The category for the plugin when displaying it in the Create New Object Type
dialog. This must be one of "3d" , "data-and-storage" , "form-
controls" , "general" , "input" , "media" , "monetisation" ,
"platform-specific" , "web" , "other" .

The main class declaration of the plugin looks like this:

const PLUGIN_CLASS = SDK.Plugins.MyCompany_MyAddon = class MyCustom
Plugin extends SDK.IPluginBase

Revision 38 Page 8/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata

Be sure to update the identifiers to describe your own plugin, in both the SDK
namespace and the class name.

Likewise in both type.js and instance.js, you must update the following:

PLUGIN_CLASS to refer to your plugin's name

The class name suffixed with Type or Instance . (For example the
Audio plugin uses AudioPlugin , AudioType and AudioInstance
as the three names.)

The main function of plugin.js is to define a class representing your plugin. In the
class constructor, the configuration for the plugin is set via the this._info
member, which is an IPluginInfo interface. The constructor also reads potentially
translated strings from the language subsystem.

For more information about the possible plugin configurations, see the
IPluginInfo reference.

The plugin properties appear in the Properties Bar when instances of the plugin
are selected. To set which properties appear, pass an array of PluginProperty to
this._info.SetProperties . An example is shown below. For more details

see the PluginProperty reference.

 this._info.SetProperties([
 new SDK.PluginProperty("integer", "test-property", 0)
]);

Revision 38 Page 9/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/iplugininfo
https://www.construct.net/make-games/manuals/addon-sdk/reference/pluginproperty

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/guide/configuring-behaviors

The main configuration for a behavior is set in behavior.js.

The following constants are defined in the file-level scope:

 const BEHAVIOR_ID = "MyCompany_MyAddon";
 const BEHAVIOR_VERSION = "1.0.0.0";
 const BEHAVIOR_CATEGORY = "general";

The ID and version constants must match the values specified in addon.json.

BEHAVIOR_ID
This is a unique ID that identifies your behavior from all other addons. This
must not be used by any other addon ever published for Construct 3. It must
never change after you first publish your addon. (The name is the only visible
identifier of the addon in the Construct 3 editor, so that can be changed any
time, but the ID must always be the same.) To ensure it is unique, it is
recommended to use a vendor-specific prefix, e.g. MyCompany_MyAddon .

BEHAVIOR_VERSION
A string specifying the addon version in four parts (major, minor, patch,
revision). Be sure to update this when releasing updates to your addon, which
must also be updated in addon.json.

BEHAVIOR_CATEGORY
The category for the behavior when displaying it in the Add behavior dialog.
This must be one of "attributes" , "general" , "movements" ,
"other" .

The main class declaration of the behavior looks like this:

const BEHAVIOR_CLASS = SDK.Behaviors.MyCompany_MyAddon = class MyCu

Revision 38 Page 10/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-behaviors
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata

stomBehavior extends SDK.IBehaviorBase

Be sure to update the identifiers to describe your own behavior, in both the SDK
namespace and the class name.

Likewise in both type.js and instance.js, you must update the following:

BEHAVIOR_CLASS to refer to your behavior's name

The class name suffixed with Type or Instance . (For example the
Bullet behavior uses BulletBehavior , BulletType and
BulletInstance as the three names.)

The main function of behavior.js is to define a class representing your behavior. In
the class constructor, the configuration for the behavior is set via the
this._info member, which is an IBehaviorInfo interface. The constructor

also reads potentially translated strings from the language subsystem.

For more information about the possible behavior configurations, see the
IBehaviorInfo reference.

The behavior properties appear in the Properties Bar when instances using the
behavior are selected. To set which properties appear, pass an array of
PluginProperty to this._info.SetProperties . An example is shown
below. For more details see the PluginProperty reference. (Note that
behaviors use the same property class as plugins, hence re-using the
PluginProperty class for behaviors.)

 this._info.SetProperties([
 new SDK.PluginProperty("integer", "test-property", 0)
]);

Revision 38 Page 11/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/ibehaviorinfo
https://www.construct.net/make-games/manuals/addon-sdk/reference/pluginproperty

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/guide/configuring-effects

The main configuration for an effect is set by additional effect-specific properties
in addon.json. The additional properties used by effects are listed below.

category
The category the effect should appear in. This must be one of "3d" ,
"blend" , "color" , "distortion" , "mask" , "normal-

mapping" , "tiling" , "other" .

supported-renderers
An array of strings indicating the supported renderers for this effect. By default
(if omitted) it is ["webgl"] . The string "webgl2" can be added to
support a WebGL 2 variant of the effect - see the section on WebGL shaders
for more details. The string "webgpu" can be added to support the
WebGPU renderer with a shader written in WGSL - see the section on
WebGPU shaders for more details.

blends-background
Boolean indicating whether the effect blends with the background. Objects and
layers can use effects that blend with the background, but layouts cannot.

uses-depth
Boolean indicating whether the effect samples the depth buffer with the
samplerDepth uniform. This is used for depth-based effects like fog.

cross-sampling
Boolean indicating whether a background-blending effect has inconsistent
sampling of the background and foreground. A normal blending shader like
Multiply will sample the background and foreground 1:1, so each foreground
pixel samples only the background pixel it is rendered to. This is consistent
sampling so cross-sampling should be false . However an effect that
distorts the background, like Glass or a masking Warp effect, can sample
different background pixels to the foreground pixel being rendered, so should
set cross-sampling to true . This must be specified so the effect
compositor can ensure the correct result is rendered when this happens.

preserves-opaqueness
Revision 38 Page 12/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-effects
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects/webgl-shaders
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects/webgpu-shaders

Boolean indicating whether the effect preserves opaque pixels, i.e. every input
pixel with an alpha of 1 is also output with an alpha of 1. This is true for most
color-altering effects, but not for most distorting effects, since in some cases a
previously opaque pixel will be distorted in to a transparent area of the texture.
This information is not currently used, but is important for front-to-back
rendering algorithms.

animated
Boolean indicating whether the effect is animated, i.e. changes over time using
the seconds uniform. This is used to ensure Construct keeps redrawing the
screen if an animated effect is visible.

must-predraw
Boolean indicating whether to force the pre-draw step. Sometimes Construct
tries to optimise effect rendering by directly rendering an object with the shader
applied. Setting this flag forces Construct to first render the object to an
intermediate surface, which is necessary for some kinds of effect.

extend-box
Amount to extend the rendered box horizontally and vertically. Normally the
effect is clipped to the object's bounding box, but some effects like Warp need
to be able to render a short distance outside of that for the correct result. This
property lets you extend the rendered box by a number of pixels. This property
uses "horizontal" and "vertical" sub-properties, e.g. "extend-
box": { "horizontal": 30, "vertical": 30 }

is-deprecated
Boolean to indicate a deprecated effect. This hides the effect from the Add
effect dialog, but allows existing projects to continue using it. This allows an
effect to be phased out without breaking projects.

parameters
An array of parameters that the effect uses. See the next section for more
information.

The parameters array in addon.json specifies a list of parameters that are
passed to the shader as uniforms. These can be used to customise the
appearance of the effect, and can also be changed at runtime. Each parameter is
specified as an object with the following properties.

Revision 38 Page 13/200

id
A string identifying this parameter.

c2id
Optional The corresponding ID used in a compatible legacy Construct 2 effect
if this is not the same as the id . Note for color parameters, this can be a
comma-separated list of the three parameter IDs previously used for the red,
green and blue components, e.g. "red,green,blue" .

type
The type of the effect parameter. This can be one of "float" ,
"percent" or "color" . Floats pass a simple number. Percent displays

a percentage in the 0-100 range but passes a float in the 0-1 range to the
shader. Color shows a color picker and passes a vec3 with components in the
0-1 range to the shader.

initial-value
The initial value of the shader uniform, in the format the shader uses it (i.e. 0-1
range for percent parameters). For color parameters, use a 3-element array,
e.g. [1, 0, 0] for red.

uniform
WebGL only The name of the corresponding uniform in the shader. The
uniform must be declared in GLSL with this name. It can use whichever
precision you want, but the uniform type must be vec3 for color parameters,
otherwise float .

This only applies to WebGL shaders written in GLSL. The WebGPU
renderer ignores this setting.

interpolatable
Set to true so the property can be supported by timelines.

Construct supports rendering with both WebGL and the newer WebGPU.
However these technologies use different shader languages: WebGL uses GLSL,
and WebGPU uses WGSL. To support both renderers your effect will need to
provide both a GLSL and WGSL shader which both render equivalently.

For more details on writing shaders, see WebGL shaders for GLSL-specific
information, and see WebGPU shaders for WGSL-specific information.

Revision 38 Page 14/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects/webgl-shaders
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-effects/webgpu-shaders

You should test your shader works with both renderers. Change the Enable
WebGPU setting in the Advanced section of Project Properties to test both
renderers. You can also change the Enable WebGPU in editor setting in
Construct's Settings dialog to test both renderers with the editor's rendering in the
Layout View.

Revision 38 Page 15/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/guide/configuring-effects/webgl-shaders

Effect addons that support WebGL must provide a shader written in WebGL's
shading language GLSL. This section provides information specific to WebGL
shaders.

All shaders written for WebGL 1 (using GLSL ES 1.0) are compatible with both
WebGL 1 and WebGL 2. There is no need to write a WebGL 2 variant of a shader
unless you need specific features only available with WebGL 2 (using GLSL ES
3.0).

If you do write a WebGL 2 shader, we strongly recommend still providing a
WebGL 1 shader. Do whatever you can to support WebGL 1, perhaps by using
WebGL 1 extensions (see the following section for more details), or use a fallback
like a low quality version, a glitchy version, or even just output transparency so it
doesn't render. If you don't provide a WebGL 1 shader at all, then any project
using your shader will cause an error on devices that still only support WebGL 1,
with the project failing to load and just displaying a blank screen.

To provide a WebGL 2 shader variant, ensure "webgl2" is listed in the
"supported-renderers" property of addon.json, e.g.:

"supported-renderers": ["webgl", "webgl2"]

This tells Construct to look for both a WebGL 1 and WebGL 2 shader for your
addon.

The WebGL 1 shader is still in the file effect.fx as before. If enabled then
the file effect.webgl2.fx specifies the shader to load for WebGL 2. A
sample of an effect using both WebGL 1 and WebGL 2 shaders is provided in the
effect SDK download.

WebGL 2 shaders are written using GLSL ES 3.0, as opposed to GLSL ES 1.0
for WebGL 1 shaders. This documentation does not cover the full details of how
to write WebGL shaders - there are lots of other resources across the web

Revision 38 Page 16/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-effects/webgl-shaders

covering that. However some key points to note when writing a WebGL 2 shader
are:

A WebGL 2 shader MUST start with the line #version 300 es . This must
be the first line - no comments or other lines are allowed before it.

Change varying to in for the vTex declaration.

gl_FragColor is not used in WebGL 2 shaders. Instead declare out
lowp vec4 outColor; at the top level and assign the result color to that.

The texture2D() function for sampling a texture is now just texture()
with WebGL 2.

Once adapted you can then make use of WebGL 2 shader features, such as
dFdx() , dFdy() and textureGrad() .

When only WebGL 1 is supported, Construct unconditionally activates the
following extensions if supported:

EXT_frag_depth

OES_standard_derivatives

EXT_shader_texture_lod

If your WebGL 2 shader uses equivalent features, this means you can sometimes
support WebGL 1 too by activating them in your WebGL 1 shader, e.g.:

#extension GL_EXT_frag_depth : enable
#extension GL_EXT_shader_texture_lod : enable
#extension GL_OES_standard_derivatives : enable

// now you can use gl_FragDepthEXT, dFdx, dFdy, texture2DGradEXT et
c.

Note Construct currently doesn't support any way to provide an alternative
WebGL 1 shader when these extensions are not supported. However this
approach lets you support more devices as instead of requiring WebGL 2, your
shader can work with WebGL 1 as well when the necessary extensions are
available.

WebGL 2 does not support these extensions as they are built-in features
with WebGL 2. You cannot write just a WebGL 1 shader using those
extensions, as it won't work with WebGL 2. Instead you must write a

Revision 38 Page 17/200

WebGL 2 shader variant.

The Construct editor provides a setting to force the editor and preview to run with
WebGL 1. This can help you test your shader variants with both WebGL 1 and
WebGL 2 (assuming your device supports WebGL 2). Note this option exists for
shader testing only - exported projects will continue to use WebGL 2 when
available regardless of the editor setting.

Shaders are written in a GLSL (OpenGL Shading Language) ES 1.0 fragment
shader and interpreted by the browser's WebGL implementation. As with normal
fragment shaders, the output is written to the special gl_FragColor variable.
A WebGL 2 shader variant can be provided which must be written in GLSL ES
3.0 which has a number of differences; see the previous section on adding a
WebGL 2 shader variant for more details.

The current foreground texture co-ordinate is provided in the special variable
vTex . This is normally used to read the foreground texture, but it is actually

optional (in case you want to write a shader that generates all of its output without
reference to the foreground texture at all). All other uniforms are optional, and are
documented below. The full uniform declaration is included with the recommended
precision.

uniform lowp sampler2D samplerFront;
The foreground texture sampler, to be sampled at vTex .

uniform mediump vec2 srcStart;
uniform mediump vec2 srcEnd;

The current foreground rectangle being rendered, in texture co-ordinates. Note
this is clamped as the object reaches the edge of the viewport. These are
mainly useful for calculating the background sampling position.

uniform mediump vec2 srcOriginStart;
uniform mediump vec2 srcOriginEnd;

The current foreground source rectangle being rendered, in texture co-
ordinates. This is not clamped, so can cover a rectangle that leaves the
viewport. These are mainly useful for calculating the current sampling position
relative to the object being rendered, without changing as the object clips
against the viewport.

Revision 38 Page 18/200

uniform mediump vec2 layoutStart;
uniform mediump vec2 layoutEnd;

The current foreground source rectangle being rendered, in layout co-
ordinates. This allows the current fragment's position in the layout to be
calculated.

uniform lowp sampler2D samplerBack;
The background texture sampler used for background-blending effects. The
blends-background property in addon.json should also be set to true

before using this. For the correct way to sample the background, see the next
section.

uniform lowp sampler2D samplerDepth;
The depth texture sampler used for depth-based effects. The uses-depth
property in addon.json should also be set to true before using this. The
depth texture is the same size as the background texture, so this is sampled
similarly to samplerBack . See the next section for more details.

uniform mediump vec2 destStart;
uniform mediump vec2 destEnd;

The current background rectangle being rendered to, in texture co-ordinates,
for background-blending effects. For the correct way to sample the background,
see the next section.

uniform highp float seconds;
The time in seconds since the runtime started. This can be used for animated
effects. The animated property in addon.json should be set to true .

Note highp can only be used on certain platforms. To work across all
systems, check #ifdef GL_FRAGMENT_PRECISION_HIGH to see if
highp is supported, else fall back to using mediump .

uniform mediump vec2 pixelSize;
The size of a texel in the foreground texture in texture co-ordinates. This allows
calculating distances in pixels rather than texture co-ordinates.

uniform mediump float layerScale;
The current layer scale as a factor (i.e. 1 is unscaled). This is useful to ensure
effects scale according to zoom.

uniform mediump float layerAngle;

Revision 38 Page 19/200

The current layer angle in radians.

uniform mediump float devicePixelRatio;
The value of devicePixelRatio in the browser, which is the number of device
pixels per CSS pixel. This may be necessary in some effects to handle high-
DPI displays.

uniform mediump float zNear;
uniform mediump float zFar;

The values of the project properties Near distance and Far distance, which
represent the distance of the near and far planes from the camera position.

Some common calculations done with the available uniforms are listed below.

To sample the foreground pixel:

 lowp vec4 front = texture2D(samplerFront, vTex);

To sample an adjacent pixel, offset by the pixel size:

 // sample next pixel to the right
 lowp vec4 next = texture2D(samplerFront, vTex + vec2(pixelSize.x,
0.0));

To calculate the position to sample the background, find the normalised position
n of vTex in the foreground rectangle, and apply that to the background

rectangle:

 mediump vec2 n = (vTex - srcStart) / (srcEnd - srcStart);
 lowp vec4 back = texture2D(samplerBack, mix(destStart, destEnd, n)
);

Sampling the depth buffer works similarly to sampling the background, but only
provides one component, so just read the r value. Note that the value in the
depth buffer is normalized (0-1 range) and does not linearly correspond to
distance. To get a linearized Z value for a depth sample, use the calculation
below, which uses the zNear and zFar uniforms.

 mediump vec2 n = (vTex - srcStart) / (srcEnd - srcStart);
 mediump float depthSample = texture2D(samplerDepth, mix(destStart,
 destEnd, n)).r;

Revision 38 Page 20/200

https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fWindow%2fdevicePixelRatio

 mediump float zLinear = zNear * zFar / (zFar + depthSample * (zNea
r - zFar));

To calculate the current texture co-ordinate relative to the object being rendered,
without being affected by clipping at the edge of the viewport, use the original
source rectangle:

 mediump vec2 srcOriginSize = srcOriginEnd - srcOriginStart;
 mediump vec2 n = ((vTex - srcOriginStart) / srcOriginSize);

To calculate the current layout co-ordinates being rendered, add an extra step to
interpolate n across the layout rectangle:

 mediump vec2 srcOriginSize = srcOriginEnd - srcOriginStart;
 mediump vec2 n = ((vTex - srcOriginStart) / srcOriginSize);
 mediump vec2 l = mix(layoutStart, layoutEnd, n);

Construct renders using premultiplied alpha. Often it is convenient to modify the
RGB components without premultiplication. To do this, divide by alpha to
unpremultiply the color, but be sure not to divide by zero.

 lowp vec4 front = texture2D(samplerFront, vTex);
 lowp float a = front.a;

 // unpremultiply
 if (a != 0.0)
 front.rgb /= a;

 // ...modify unpremultiplied front color...

 // premultiply again
 front.rgb *= a;

Revision 38 Page 21/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/guide/configuring-effects/webgpu-shaders

Effect addons that support WebGPU must provide a shader written in WebGPU's
shading language WGSL. This section provides information specific to WebGPU
shaders.

To provide a WGSL shader variant for WebGPU, the "supported-
renderers" property in addon.json must specify "webgpu" , e.g.:

"supported-renderers": ["webgl", "webgpu"]

Note that the supported renderers can also include "webgl2" if your
shader also uses a WebGL 2 shader variant.

This tells Construct that the effect also supports WebGPU, and it will look for a
WGSL shader file with the name effect.wgsl.

WGSL is a substantially different shader language to GLSL. This documentation
does not cover the full details of the shader language. However there are two
significant differences to GLSL shaders to note when writing WGSL shaders in
Construct:

As WebGPU is a lower-level API than WebGL, WGSL shaders tend to be more
verbose than GLSL, and also need to explicitly specify engine-specific details like
binding and group numbers. To avoid hard-coding details that may change in
future in to WGSL shaders, Construct provides a simple preprocessor based on
tokens of the form %%NAME%% . These are not part of the WGSL language but
are Construct-specific placeholders that Construct will replace with WGSL
attributes and code. A full list of the supported placeholders is included below.

1

Effect parameters are stored in a struct and have no name associated with them
in WGSL (they are referenced by a byte offset). Therefore they ignore the uniform
property for the parameter set in addon.json. Instead just list all effect parameters
in the ShaderParams struct in the order they are defined and with the
appropriate type, and Construct will automatically calculate their byte offsets and
update them accordingly.

2

Revision 38 Page 22/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-effects/webgpu-shaders

Here is a list of placeholders of the form %%NAME%% that Construct will replace
in WGSL shaders.

%%SAMPLERFRONT_BINDING%%
%%TEXTUREFRONT_BINDING%%

Replaced with the @binding and @group attributes for the foreground
sampler and texture. Example usage:
%%SAMPLERFRONT_BINDING%% var samplerFront : sampler;
%%TEXTUREFRONT_BINDING%% var textureFront :

texture_2d<f32>;

%%SAMPLERBACK_BINDING%%
%%TEXTUREBACK_BINDING%%

Replaced with the @binding and @group attributes for the background
sampler and texture. Example usage:
%%SAMPLERBACK_BINDING%% var samplerBack : sampler;
%%TEXTUREBACK_BINDING%% var textureBack :

texture_2d<f32>;

%%SAMPLERDEPTH_BINDING%%
%%TEXTUREDEPTH_BINDING%%

Replaced with the @binding and @group attributes for the depth sampler
and texture for depth effects like fog. Example usage:
%%SAMPLERDEPTH_BINDING%% var samplerDepth : sampler;
%%TEXTUREDEPTH_BINDING%% var textureDepth :

texture_depth_2d;

%%FRAGMENTINPUT_STRUCT%%
Defines the FragmentInput structure used as input to the fragment shader
method. This structure defines fragUV : vec2<f32> as the current
fragment texture co-ordinates (equivalent to vTex in GLSL shaders). It also
defines @builtin(position) fragPos : vec4<f32> and two utility
methods that use it (see below).

%%FRAGMENTOUTPUT_STRUCT%%
Defines the FragmentOutput structure returned from the fragment shader
method. This structure defines color : vec4<f32> which is used to write
the output color from the shader (equivalent to writing to gl_FragColor in
WebGL 1 shaders).

Revision 38 Page 23/200

%%SHADERPARAMS_BINDING%%
Replaced with the @binding and @group attributes for the structure
containing custom effect parameters. This structure must be defined by your
shader matching the effect parameters in the same order. It can be omitted if
the shader does not use any custom parameters. Example usage from the 'Set
color' sample shader:

struct ShaderParams {

 setColor : vec3<f32>

};

%%SHADERPARAMS_BINDING%% var<uniform> shaderParams : ShaderParams
;

%%C3PARAMS_STRUCT%%
Defines a structure named c3Params which contains members that
correspond to the Construct-provided uniforms for WebGL shaders, as well as
a set of utility methods. The members of the structure currently include:

 srcStart : vec2<f32>,

 srcEnd : vec2<f32>,

 srcOriginStart : vec2<f32>,

 srcOriginEnd : vec2<f32>,

 layoutStart : vec2<f32>,

 layoutEnd : vec2<f32>,

 destStart : vec2<f32>,

 destEnd : vec2<f32>,

 devicePixelRatio : f32,

 layerScale : f32,

 layerAngle : f32,

Revision 38 Page 24/200

 seconds : f32,

 zNear : f32,

 zFar : f32,

 isSrcTexRotated : u32

%%C3_UTILITY_FUNCTIONS%%
Defines a set of utility functions that are useful for many kinds of effects (see
below)

Some placeholders also include definitions for useful helper functions that perform
common tasks in shaders. The available functions are documented below.

fn c3_getBackUV(fragPos : vec2<f32>, texBack : texture_2d<f32>) ->vec2<f32>
Helper function to calculate the texture co-ordinates to sample the background
texture at for background blending effects. Example:
c3_getBackUV(input.fragPos.xy, textureBack)

fn c3_getDepthUV(fragPos : vec2<f32>, texDepth : texture_depth_2d) ->vec2<f32>
Helper function to calculate the texture co-ordinates to sample the depth texture
at for depth-processing effects. Example:
c3_getDepthUV(input.fragPos.xy, textureDepth)

fn c3_srcToNorm(p : vec2<f32>) -> vec2<f32>
fn c3_normToSrc(p : vec2<f32>) -> vec2<f32>
fn c3_srcOriginToNorm(p : vec2<f32>) -> vec2<f32>
fn c3_normToSrcOrigin(p : vec2<f32>) -> vec2<f32>

Pass input.fragUV to c3_srcToNorm() to return a position
normalized in the range [0, 1] relative to the box srcStart to srcEnd .
The c3_normToSrc() function performs the reverse calculation. The
srcOrigin variants work relative to the box srcOriginStart to
srcOriginEnd instead.

Revision 38 Page 25/200

fn c3_clampToSrc(p : vec2<f32>) -> vec2<f32>
fn c3_clampToSrcOrigin(p : vec2<f32>) -> vec2<f32>

Clamps a given position to the box srcStart to srcEnd or
srcOriginStart to srcOriginEnd .

fn c3_getLayoutPos(p : vec2<f32>) -> vec2<f32>
Pass input.fragUV to calculate the current corresponding position in
layout co-ordinates.

fn c3_srcToDest(p : vec2<f32>) -> vec2<f32>
Maps a texture co-ordinate in the srcStart to srcEnd rectangle to the
corresponding position in the destStart to destEnd rectangle.

fn c3_clampToDest(p : vec2<f32>) -> vec2<f32>
Clamps a texture co-ordinate to the destStart to destEnd rectangle.

fn c3_linearizeDepth(depthSample : f32) -> f32
Linearize a sample from the depth texture to a Z distance. Depth texture
samples are usually in a normalized range [0, 1]; this method returns a Z
distance based on the near and far planes, which is a more useful number for
things like fog effects.

fn c3_premultiply(c : vec4<f32>) -> vec4<f32>
fn c3_unpremultiply(c : vec4<f32>) -> vec4<f32>

Premultiplies the RGB components by the A component in a color, and the
reverse operation.

fn c3_grayscale(rgb : vec3<f32>) -> f32
Convert RGB colors to a corresponding grayscale component.

fn c3_getPixelSize(t : texture_2d<f32>) -> vec2<f32>
Returns the size of a pixel in texture co-ordinates on the given texture.

This uses the textureDimensions() WGSL built-in, and can be
used as a replacement for the pixelSize uniform in the WebGL
renderer. It is further also capable of determining the pixel size for any
given texture.

fn c3_RGBtoHSL(color : vec3<f32>) -> vec3<f32>

Revision 38 Page 26/200

fn c3_HSLtoRGB(hsl : vec3<f32>) -> vec3<f32>
Converts RGB values to the equivalent in HSL, and the reverse operation.

Some common calculations done in WGSL shaders are listed below.

To sample the foreground pixel:

var front : vec4<f32> = textureSample(textureFront, samplerFront, i
nput.fragUV);

To sample an adjacent pixel, offset by the pixel size:

// get width of a pixel in texture co-ordinates
var pixelWidth : f32 = c3_getPixelSize(textureFront).x;

// sample next pixel to the right
var next : vec4<f32> = textureSample(textureFront, samplerFront, in
put.fragUV + vec2<f32>(pixelWidth, 0.0));

To calculate the position to sample the background, use the c3_getBackUV()
helper function:

var back : vec4<f32> = textureSample(textureBack, samplerBack, c3_g
etBackUV(input.fragPos.xy, textureBack));

Sampling the depth buffer works similarly to sampling the background, but using
the c3_getDepthUV() helper function on the depth texture and sampler. It's
commonly useful to then linearize the resulting depth sample to a Z distance
based on the near and far planes, which the c3_linearizeDepth() helper
function does.

// sample depth buffer
var depthSample : f32 = textureSample(textureDepth, samplerDepth, c
3_getDepthUV(input.fragPos.xy, textureDepth));

// linearize depth sample to Z distance
var zLinear : f32 = c3_linearizeDepth(depthSample);

To calculate the current texture co-ordinate relative to the object being rendered,
without being affected by clipping at the edge of the viewport, use the
c3_srcOriginToNorm() helper method:

Revision 38 Page 27/200

var n : vec2<f32> = c3_srcOriginToNorm(input.fragUV);

To calculate the current layout co-ordinates being rendered, use the
c3_getLayoutPos() helper method:

var l : vec2<f32> = c3_getLayoutPos(input.fragUV);

Construct renders using premultiplied alpha. Often it is convenient to modify the
RGB components without premultiplication. To do this, use the
c3_unpremultiply() and c3_premultiply() helper methods:

// sample front texture
var front : vec4<f32> = textureSample(textureFront, samplerFront, i
nput.fragUV);

// unpremultiply
front = c3_unpremultiply(front);

// ...modify unpremultiplied front color...

// premultiply again
front = c3_premultiply(front);

Due to API differences between WebGL and WebGPU, the WebGL
src/srcOrigin/dest uniforms use an inverted Y direction. This means instead of
ranging from 0-1 for top-to-bottom, they range from 1-0.

Sometimes this does not have any impact on the effect. However in some cases it
does, depending on the kinds of calculation done in the shader. When porting a
GLSL shader to WGSL, you may need to emulate the inverted Y direction in
WGSL to achieve the same effect. For example the Lens2 effect uses the
following code pattern in WGSL to emulate the inverted Y direction:

// At start of shader: get normalized source co-ordinates
// and then invert Y direction to match WebGL
var tex : vec2<f32> = c3_srcToNorm(input.fragUV);
tex.y = 1.0 - tex.y;

// ... rest of effect ...

// At end of shader: invert Y direction again and then
// calculate background sampling position

Revision 38 Page 28/200

p.y = 1.0 - p.y;

var output : FragmentOutput;
output.color = textureSample(textureBack, samplerBack, mix(c3Params
.destStart, c3Params.destEnd, p));

If you are writing a new effect, consider writing the WebGPU shader first, and
then if necessary applying the Y inversion in the WebGL shader instead. As
WebGPU is the newer technology, in the long term the WebGL renderer may
eventually be retired, in which case it is better to have a natural code style in the
WGSL shader.

Revision 38 Page 29/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/defining-
aces

The set of actions, conditions and expressions which are available in your addon
is defined in aces.json. The term "ACE" is used to refer to an action, condition or
expression in general. ACEs are grouped by category. The overall structure of the
file format is as follows.

{
 "category1": {
 "conditions": [
 condition1,
 condition2,
 ...
],
 "actions": [
 action1,
 action2,
 ...
],
 "expressions": [
 expression1,
 expression2,
 ...
]
 },
 "category2": {
 "conditions": [
 ...
],
 "actions": [
 ...
],
 "expressions": [
 ...
]
 }

Revision 38 Page 30/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/defining-aces

}

Note that Construct 2 uses numbers for IDs, whereas Construct 3 uses strings.
These strings are then also used to identify related language strings in the
language file.

The addon SDK provides a JSON schema to help you write aces.json files, as it
provides autocomplete and validation in compatible editors. Construct will ignore a
"$schema" property at the top level instead of interpreting it as a category to

help make it easy to use the schema.

Once you have released your addon, never delete any actions, conditions
or expressions from it. This will corrupt everyone's projects that use your
addon, because Construct will no longer be able to find the deleted action,
condition or expression in your addon. Instead mark the features
deprecated so they are hidden.

Each category key is the category ID. This is not displayed in the editor; the string
to display is looked up in the language file.

For behaviors only, a default category of an empty string may be used. This
category will use the behavior name. Other categories may still be used, in which
case Construct 3 will append the category name after the behavior name, e.g.
"MyBehaviorName: My category".

Each entry in the "conditions" , "actions" and "expressions"
arrays is a JSON object which defines a single condition, action or expression. An
example minimal condition definition for the System Every Tick condition is shown
below.

{
 "id": "every-tick",
 "scriptName": "EveryTick"
}

Revision 38 Page 31/200

The id and scriptName are the only required properties for conditions
and actions. Expressions require id , expressionName and
returnType . All other properties are optional.

The definitions for conditions, actions and expressions all share a few common
properties. These are detailed below. Then the properties specific to each kind is
documented after that.

id
A string specifying a unique ID for the ACE. This is used in the language file.
By convention this is lowercase with dashes for separators, e.g. "my-condition".

c2id
If you are porting a Construct 2 addon to Construct 3, put the corresponding
numerical ID that the Construct 2 addon used here. This allows Construct 3 to
import Construct 2 projects using your addon.

scriptName / expressionName
The name of the function in the runtime script for this ACE. Note for
expressions, use expressionName instead, which also defines the name
typed by the user in expressions.

isDeprecated
Set to true to deprecate the ACE. This hides it in the editor, but allows existing
projects to continue using it.

highlight
Set to true to highlight the ACE in the condition/action/expression picker
dialogs. This should only be used for the most regularly used ACEs, to help
users pick them out from the list easily.

params
An array of parameter definitions. See the section below on parameters. This
can be omitted if the ACE does not use any parameters.

Condition definitions can also use the following properties.

isTrigger
Specifies a trigger condition. This appears with an arrow in the event sheet.
Instead of being evaluated every tick, triggers only run when they are explicity
triggered by a runtime call.

Revision 38 Page 32/200

isFakeTrigger
Specifies a fake trigger. This appears identical to a trigger in the event sheet,
but is actually evaluated every tick. This is useful for conditions which are true
for a single tick, such as for APIs which must poll a value every tick.

isStatic
Normally, the condition runtime method is executed once per picked instance. If
the condition is marked static, the runtime method is executed once only, on
the object type class. This means the runtime method must also implement the
instance picking entirely itself, including respecting negation and OR blocks.

isLooping
Display an icon in the event sheet to indicate the condition loops. This should
only be used with conditions which implement re-triggering.

isInvertible
Allow the condition to be inverted in the event sheet. Set to false to disable
invert.

isCompatibleWithTriggers
Allow the condition to be used in the same branch as a trigger. Set to false
if the condition does not make sense when used in a trigger, such as the
Trigger once condition.

Action definitions can also use the following properties.

isAsync
Set to true to mark the action as asynchronous. Make the action method an
async function, and the system Wait for previous actions to complete

action will be able to wait for the action as well.

Expressions work slightly differently to conditions and actions: they must specify a
returnType , and instead of using a scriptName they specify an
expressionName which doubles as both what is typed for the expression as

well as the runtime script function name.

returnType
One of "number" , "string" , "any" . The runtime function must

Revision 38 Page 33/200

return the corresponding type, and "any" must still return either a number or
a string.

isVariadicParameters
If true , Construct 3 will allow the user to enter any number of parameters
beyond those defined. In other words the parameters (if any) listed in
"params" are required, but this flag enables adding further "any" type

parameters beyond the end.

ACEs can all define which parameters they use with the "params" property.
This property should be set to an array of parameter definition objects. Below
shows an example for the System Compare two values condition.

{
 "id": "compare-two-values",
 "scriptName": "Compare",
 "params": [
 { "id": "first-value", "type": "any" },
 { "id": "comparison", "type": "cmp" },
 { "id": "second-value", "type": "any" }
]
}

Note that expressions can only use "number" , "string" or "any"
parameter types.

id
A string with a unique identifier for this parameter. This is used to refer to the
parameter in the language file.

c2id
In some circumstances, it is necessary to specify which Construct 2 parameter
ID a parameter corresponds to. However normally it can be inferred by the
parameter index.

type
The parameter type. Expressions can only use "number" , "string" or
"any" . However conditions and actions have the following options available:

"number" — a number parameter
Revision 38 Page 34/200

"string" — a string parameter

"any" — either a number or a string

"boolean" — a boolean parameter, displayed as a checkbox

"combo" — a dropdown list. Items must be specified with the "items"
property.

"cmp" — a dropdown list with comparison options like "equal to", "less
than" etc.

"object" — an object picker. The types of plugin to show can be filtered
using an optional "allowedPluginIds" property.

"objectname" — a string parameter which is interpreted as an object
name

"layer" — a string parameter which is interpreted as a layer name

"layout" — a dropdown list with every layout in the project

"keyb" — a keyboard key picker

"instancevar" — a dropdown list with the non-boolean instance
variables the object has

"instancevarbool" — a dropdown list with the boolean instance
variables the object has

"eventvar" — a dropdown list with non-boolean event variables in
scope

"eventvarbool" — a dropdown list with boolean event variables in
scope

"animation" — a string parameter which is interpreted as an animation
Revision 38 Page 35/200

name in the object

"objinstancevar" — a dropdown list with non-boolean instance
variables available in a prior "object" parameter. Only valid when
preceded by an "object" parameter.

initialValue
A string which is used as the initial expression for expression-based
parameters. Note this is still a string for "number" type parameters. It can
contain any valid expression for the parameter, such as "1 + 1". For
"boolean" parameters, use a string of either "true" or "false" . For
"combo" parameters, this is the initial item ID.

items
Only valid with the "combo" type. Set to an array of item IDs available in the
dropdown list. The actual displayed text for the items is defined in the language
file.

allowedPluginIds
Optional and only valid with the "object" type. Set to an array of plugin IDs
allowed to be shown by the object picker. For example, use ["Sprite"] to
only allow the object parameter to select a Sprite.

The aces.json file does not include any strings displayed in the editor UI. These
are all kept in a separate language file to facilitate translation. Therefore to finish
adding ACEs, the relevant UI strings like the list name and description must be
added to the language file. See The language file for more information.

Revision 38 Page 36/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/language-file

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/language-
file

In the .c3addon file, en-US.json is the default language file containing all the
addon's strings that are shown in the editor UI in a JSON format. Moving these
strings to a separate file makes it possible for the software to be fully translated.

All strings must be provided in US English (hence the filename en-US.json) since
this is the default language of Construct 3, and the common language from which
all other languages are translated.

The overall structure of the language file is as follows, taken from the plugin SDK
template. Note that in general, the language file uses an ID as a key on the left,
and the string to display as the value on the right.

{
 "languageTag": "en-US",
 "fileDescription": "Strings for MyCustomPlugin.",
 "text": {
 "plugins": {
 "mycompany_myaddon": {
 "name": "My Custom Plugin",
 "description": "Description for my custom plugin.",
 "help-url": "https://www.scirra.com",
 "properties": {
 "test-property": {
 "name": "Test property",
 "desc": "A test number property. Displayed by 'Alert' action.
"
 }
 },
 "aceCategories": {
 "custom": "Custom"
 },
 "conditions": {
 "is-large-number": {
 "list-name": "Is large number",
 "display-text": "[i]{0}[/i] is a large number",
 "description": "Test if a number is greater than 100.",

Revision 38 Page 37/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/language-file

 "params": {
 "number": {
 "name": "Number",
 "desc": "Number to test if greater than 100."
 }
 }
 }
 },
 "actions": {
 "do-alert": {
 "list-name": "Do alert",
 "display-text": "Do alert",
 "description": "Do a dummy alert."
 }
 },
 "expressions": {
 "double": {
 "description": "Double a number.",
 "translated-name": "Double",
 "params": {
 "number": {
 "name": "Number",
 "desc": "The number to double."
 }
 }
 }
 }
 }
 }
 }
}

The addon SDK provides a JSON schema to help you write language files, as it
provides autocomplete and validation in compatible editors.

"languageTag" must be "en-US".

"fileDescription" is not used in the editor. It provides a hint to translators.
It can simply say "Strings for [addon name]".

"text" represents the root node of the string tree, and "plugins" represents
strings for all plugins. These should be left as they are.

Revision 38 Page 38/200

"mycompany_myaddon" should be the lowercase addon ID. Note if your
addon ID contains any uppercase characters, they should be lowercased for this
key in the language file. The remaining strings all belong inside this key, since it
represents your plugin.

"name" is the name of your plugin as it appears in the editor. This can be
changed at any time, but the plugin ID should not be changed after release.

"description" is a short sentence or two describing what your plugin does.

"help-url" is a URL to documentation or support for your plugin.

Note: themes only need to use the "name" , "description" and
"help-url" fields.

For each PluginProperty your plugin uses, there must be a key with the property
ID under "properties" . For effects, there must be a key with the parameter
ID under a "parameters" instead, but it otherwise works the same. The
required strings for each property are:

"name" — the name of the property, which appears to the left of the field

"desc" — the property description, which appears in the footer of the
Properties Bar

For example given the following property:

new SDK.PluginProperty("integer", "test-property", 0)

The following language strings can be used under the "properties" key:

"test-property": {
 "name": "Test property",
 "desc": "A test number property. Displayed by 'Alert' action."
}

Some properties require additional keys.

The "combo" property type needs an extra "items" key to set the visible
name of each item. Each key underneath this should be the ID of the combo item,
and its value the name to use. Here is an example from the Audio plugin. The

Revision 38 Page 39/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/pluginproperty

property is created as:

new SDK.PluginProperty("combo", "timescale-audio", {
 initialValue: "off",
 items: ["off", "sounds-only", "sounds-and-music"]
})

Note the items defined here are IDs rather than displayed strings. The strings to
display are set in the language file like this:

"timescale-audio": {
 "name": "Timescale audio",
 "desc": "Choose whether the audio playback rate changes with the t
ime scale.",
 "items": {
 "off": "Off",
 "sounds-only": "On (sounds only)",
 "sounds-and-music": "On (sounds and music)"
 }
}

The "link" property type needs an extra "link-text" key to set the text
of the clickable link. An example is below.

"make-original-size": {
 "name": "Size",
 "desc": "Click to set the object to the same size as its image.",
 "link-text": "Make 1:1"
}

When defining ACEs, category IDs are used rather than category names. The
"aceCategories" key defines the displayed name of each category. The

following example displays all ACEs in the category ID "customCategory" as
being in a section labelled "My custom category" .

"aceCategories": {
 "customCategory": "My custom category"
}

Revision 38 Page 40/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/defining-aces

Category names are shared across actions, conditions and expressions.

Strings for conditions, actions and expressions are listed in the keys
"conditions" , "actions" and "expressions" respectively. Note

they are not sorted by category here; each section lists all ACEs of that type.

Similar to properties, each key under each section is the ID of the action, condition
or expression. As with the definitions themselves, actions and conditions work
slightly differently to expressions.

The required keys are:

"list-name" — the name that appears in the condition/action picker
dialog.

"display-text" — the text that appears in the event sheet. You can use
simple BBCode tags like [b] and [i] , and use {0} , {1} etc. as
parameter placeholders. (There must be one parameter placeholder per
parameter.) For behaviors only, the placeholder {my} is substituted for the
behavior name and icon.

"description" — a description of the action or condition, which appears
as a tip at the top of the condition/action picker dialog.

The required keys are:

"description" — the description that appears in the expressions
dictionary, which lists all available expressions.

"translated-name" — the translated name of the expression name. In
the en-US file, this should simply match the expression name from the
expression definition. This key mainly exists so it can be changed in other
languages, making it possible to translate expressions in some contexts. Note
when actually typing an expression the non-translated expression name must
always be used.

Actions, conditions and expressions can omit the "params" key if they have
no parameters. However if they have any parameters this key must be present,
and each parameter must have its own key inside with the ID of the parameter.

Revision 38 Page 41/200

Similar to the plugin properties, each key must have a "name" , "desc" and
for combo parameters, "items" (which work the same as "combo" property
types: each item ID maps to its display text).

The Is large number condition in the plugin SDK uses the following definition in
aces.json:

{
 "id": "is-large-number",
 "scriptName": "IsLargeNumber",
 "highlight": true,
 "params": [
 {
 "id": "number",
 "type": "number"
 }
]
}

Its corresponding language strings are defined in en-US.json as follows:

"is-large-number": {
 "list-name": "Is large number",
 "display-text": "[i]{0}[/i] is a large number",
 "description": "Test if a number is greater than 100.",
 "params": {
 "number": {
 "name": "Number",
 "desc": "Number to test if greater than 100."
 }
 }
}

Revision 38 Page 42/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/runtime-
scripts

Plugin and behavior addons have separate scripts that run in the context of the
runtime (the Construct game engine) rather than the editor.

Effects don't use runtime scripts. They will work in both runtimes without
needing any changes.

For a reference on the C3 runtime, please refer to the section on the Runtime API
reference.

In the runtime, much code is shared with the editor, such as the WebGL renderer
class. However in the editor, API calls are behind a special SDK layer (usually
within the SDK namespace), for security and compatibility reasons. On the other
hand the runtime does not use a special SDK layer, for maximum performance
and flexibility; these calls are usually within the C3 namespace. Be sure to use
the right namespace depending on the context.

The runtime APIs allow access to all parts of the engine. Do not use
undocumented features, or other object's properties or methods beginning
with an underscore, which is a convention used to indicate private features.
These features are subject to change at any time, including backwards-
incompatible changes, or complete removal, that may break your addon. If
your addon uses these features and is broken by a change, we will not offer
any support, since you should not have been using them in the first place. If
users complain about the breakage, we will forward them on to you. It is
important to allow flexibility in the core engine to ensure we can make
optimisations, do necessary refactoring, implement new features, and so
on, which is why we will only support the documented, public APIs.

A major architectural feature of the runtime is the ability to host the runtime in a
dedicated worker, off the main thread. In this mode it renders using

Revision 38 Page 43/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/runtime-scripts
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/runtime

OffscreenCanvas. With the modern web platform, many functions and classes are
available in dedicated workers, and more are being added over time. Refer to this
MDN guide on available APIs in workers.

Providing your addon's runtime calls only use APIs available in a worker, such as
fetch() or IndexedDB, then it will not need any changes to support a worker.

However if it does use APIs not normally available in a worker, then it will need
some changes.

The principle behind making calls to the main thread in the C3 runtime is to split
the runtime scripts in to two halves: the runtime side (that runs in the worker), and
the DOM side (that runs on the main thread where the document is). The DOM
side has full access to all browser APIs. The runtime side can issue DOM calls
using a specially-designed messaging API built in to the runtime. Essentially
instead of making a call, you simply post a message with parameters for the call to
the script on the DOM side, where the API call is really made. The DOM side can
then send a message back with a result, or send messages to the runtime on its
own, such as in response to events. The messaging APIs make this relatively
straightforward. However one consequence to note is that a synchronous API call
will become asynchronous, since the process of messaging to or from a worker is
asynchronous.

Once this approach is used, there is no need to change anything to support the
normal (non-Worker) mode. In this case both scripts will run in the same context
and the messaging API will simply forward messages within the same context too.
Therefore this one approach covers both cases, and ensures code works
identically regardless of whether the runtime is hosted in the main thread or a
worker.

By default Construct 3 assumes no DOM scripts are used. If you want to use one,
use the following call on IPluginInfo to enable one:

this._info.SetDOMSideScripts(["c3runtime/domSide.js"]);

Since an array of script paths is used, if you have a lot of DOM code, you can split
it across different files. Don't forget to add these files to the file list in
addon.json .

For documentation on the DOM messaging APIs, refer to DOMElementHandler
(used in domSide.js), SDKDOMPluginBase (used in plugin.js), and
SDKDOMInstanceBase (used in instance.js).

For an example demonstrating how to get started, see the domElementPlugin
Revision 38 Page 44/200

https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fWeb_Workers_API%2fFunctions_and_classes_available_to_workers
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domelementhandler
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdompluginbase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdominstancebase

template in the C3 plugin SDK download. This demonstrates using the above
APIs to create a simple <button> element in the DOM with a custom button
text, and firing an On clicked trigger, with support for running in a Web Worker.

Plugins and behaviors can display custom properties in the debugger by
overriding the GetDebuggerProperties() method of the instance class. It
should return an array of property sections of the form { title,
properties } , where title is a string of the section title and
properties is an array of property objects. Each property object is of the form
{ name, value } with an optional onedit callback. The name must be a

string, and the value can be a string, number or boolean.

If an onedit callback is omitted, the debugger displays the property as read-
only. If it is provided, the debugger allows the property to be edited. If it is
changed, the callback is run with the new value as a parameter.

In many cases, editing a property does the equivalent of an action. To
conveniently manage your code, you can implement actions as methods on your
instance class, and call the same method from both the action and the debugger
edit handler. These methods can then also be re-used for other interfaces, such
as the scripting inferface, or an API for other addons to call.

By default, property section titles and property names are interpreted as language
string keys. This allows them to be translated by looking them up in your addon's
language file. Note property values do not have any special treatment. You can
bypass the language file lookup by prefixing the string with a dollar character $,
e.g. the property name "plugins.sprite.debugger.foo" will look up a
string in the language file, but "$foo" will simply display the string foo .

The debugger runs in a separate context to the editor, and as such not all
language strings are available. The language keys available in the debugger are:

The addon name

All property names

All combo property items

Everything under the "debugger" key

In general, if you need a language string for the debugger, simply place it under
Revision 38 Page 45/200

the "debugger" key, e.g. at "plugins.sprite.debugger.foo".

The following code is used by the Sprite plugin to display its animation-related
debugger properties. Notice how it uses language keys and calls actions to update
properties.

GetDebuggerProperties()
{
 const Acts = C3.Plugins.Sprite.Acts;
 const prefix = "plugins.sprite.debugger.animation-properties";
 return [{
 title: prefix + ".title",
 properties: [
 {name: prefix + ".current-animation", value: this._currentAnimat
ion.GetName(), onedit: v => this._SetAnimation(v)},
 {name: prefix + ".current-frame", value: this._currentFrameInde
x, onedit: v => this._SetAnimationFrame(v)},
 {name: prefix + ".is-playing", value: this._isAnimationPlaying
, onedit: v => this._SetAnimationPlaying(v)},
 {name: prefix + ".speed", value: this._currentAnimationSpeed,
 onedit: v => this._SetAnimationSpeed(v)},
 {name: prefix + ".repeats", value: this._animationRepeats,
 onedit: v => this._SetAnimationRepeats(v)}
]
 }];
}

Revision 38 Page 46/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/timeline-
integration

Adding timeline support to a 3rd party addon, be it a plugin, behavior or effect is
quite easy. A little bit of extra work is needed though, here is how to do it.

Set the interpolatable plugin property option to true in all the plugin properties
which should be supported by timelines.

1

Implement the GetPropertyValueByIndex(index) method in the plugin instance
class.

index argument
Refers to the index of each property in the plugin as they are given to the
constructor of the plugin instance class.

return value
The current value associated with the passed in index. Depending on the
current implementation this could be as easy as returning an existing variable.

Colors: color properties should be returned as an array of 3 values. If the
internal representation used by the plugin is different, the conversion needs
to be made before returning the color.

Angles: if a plugin uses a value as an angle, but it is not specifically defined
as an angle in the plugin definition, this method needs to make sure the
value is in the same format as it is shown in the editor before returning it.
Ex. A plugin internally converting a property from degrees to radians,
should make sure the value returned by GetPropertyValueByIndex is in
degrees.

2

Implement the SetPropertyValueByIndex(index, value) method in the plugin
instance class.

index argument
Refers to the index of each property in the plugin as they are given to the
constructor of the plugin instance class.

3

Revision 38 Page 47/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/timeline-integration
https://www.construct.net/en/make-games/manuals/construct-3/project-primitives/timelines
https://www.construct.net/en/make-games/manuals/construct-3/project-primitives/objects/plugins
https://www.construct.net/en/make-games/manuals/construct-3/project-primitives/objects/behaviors
https://www.construct.net/en/make-games/manuals/construct-3/project-primitives/objects/effects
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/pluginproperty

Some plugins might need to update the layout view to give a preview of the
changes they are making. In this case a few more methods needs to be
implemented so the plugin can update it's internal state when a timeline starts
preview and when it stops preview.

value argument
The new value that needs to be applied to the specified property. The passed in
value is absolute so it should be applied directly with the = operator.

return value
No return value is required.

Depending on the implementation, additional work might be needed when a
property changes. Ex. If the plugin relies on any sort of caching relating to a
property, changing that property
would require an update to the cache in order for everything to continue
working properly as the plugin is modified by a timeline.

Colors: these values are received as arrays of 3 values. The values should
be applied according to the plugin's internal representation.

Angles: if a plugin uses a value as an angle, but it is not specifically defined
as angle in the plugin definition. This method needs to make sure the
incoming value is using the same format as the internal representation
before making the assignment. Ex. A plugin internally converting a property
from degrees to radians, will need to convert the incoming value of
SetPropertyValueByIndex from degrees into radians.

Implement the OnTimelinePropertyChanged (id, value, detail) method in the plugin
instance class.

id argument
The id of the property that is changing.

value argument
The value that is being applied by the timeline.

detail argument
An object with details about the value. It has a "resultMode" property with a

1

Revision 38 Page 48/200

See plugin integration above, all steps apply.

Edit the effect's .json file and add the interpolatable property with a value of true to
each paramenter definition which should be supported by timelines. No additional
modifications needed.

NOTE: Remember that not all properties need to be supported, if it looks
like it doesn't make sense for a property to receive dynamic updates, it is ok
to not support it.

value of either "absolute" or "relative".

"value" and "detail" are not needed in the most common use case of just
updating the internal state of the plugin.

This method is similar to OnPropertyChanged(id, value) and in most cases
can be implemented in similar fashion.

In this function the plugin needs to update the corresponding internal state,
namely using the new GetTimelinePropertyValue(id) method from
IObjectInstance which gets the value of a property with any changes a
timeline might be applying to it. After the corresponding internal state is
updated, refresh the layout view to view the changes.

implement OnExitTimelineEditMode (). This method is called when timeline edit
mode is turned off. In this method the plugin's internal state should be updated
again so any timeline changes from the preview are reset. Using
GetPropertyValue(id) to get values without timeline changes, applying those to the
relevant internal variables of the plugin and refreshing the layout view should be
enough.

2

Revision 38 Page 49/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/configuring-effects

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/script-
minification

Projects exported with "Minify script" enabled will run all script through an
advanced minifier. This includes mangling property names to achieve maximum
compression, and increase the difficulty of reverse engineering. The process uses
Google Closure Compiler's advanced optimisations mode.

JavaScript in addons needs to be specially written to take in to account the
minifier if they use external APIs that are not processed by the same minifier.
Once you are familiar with what the minifier does, this is a straightforward process.
Be sure to test your addon with minification to ensure it won't be broken when
users export with minification enabled.

This process also affects JavaScript code that users write in Construct the same
way as it affects your addon. Therefore for details on how to handle script
minification, refer to the guide on exporting with advanced minification from the
scripting section of the Construct manual.

Revision 38 Page 50/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/script-minification
https://www.construct.net/en/make-games/manuals/construct-3/scripting/guides/advanced-minification

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/wrapper-
extensions

An additional feature of Construct's plugin SDK is that it allows bundling a
wrapper extension for deeper platform integration. This is currently only
supported with the Windows WebView2 and Xbox UWP (WebView2) export
options. The Windows WebView2 exporter uses a traditional desktop Windows
application using low-level Win32 APIs that embeds Microsoft WebView2 to load
web content. Similarly the Xbox UWP (WebView2) exporter embeds WebView2 to
load web content, but in the context of a Universal Windows Platform (UWP) app.
The application can be thought of as a "wrapper" around the web content. Plugins
can provide a dynamic link library (DLL) that extends the wrapper with custom
features using the full capabilities of the wrapper application - hence the name
wrapper extension. The model is similar to Cordova on mobile, where a Cordova
plugin can be used for platform-specific integration and called from JavaScript,
performing a similar role to a wrapper extension.

The system uses a minimal message-passing system to send small amounts of
JSON data between the Construct plugin and the wrapper extension. This allows
them to communicate so the wrapper extension can perform tasks for the
Construct plugin that are not normally achievable in JavaScript alone. It is
specifically designed for integrating C/C++ SDKs such as Steamworks.

The Construct Addon SDK includes the wrapper extension SDK under the path
plugin-sdk/wrapperExtensionPlugin. A wrapper extension works as follows:

A Visual Studio 2022 (the Community edition is a free download) solution in the
extension subfolder uses C++ code to build a DLL which integrates custom
features, such as a C/C++ SDK like Steamworks.

The DLL uses .ext.dll as the file extension. The wrapper application looks for
DLLs with this name in the same folder as the executable, and will
automatically load them on startup.

The Construct plugin bundles the .ext.dll file by calling
AddFileDependency() with the type "wrapper-extension" . This

means when a project using the addon is exported, it will also export the
necessary .ext.dll file.

The Construct plugin can then detect that the wrapper extension is available,
and if it is, send messages instructing the wrapper extension to perform certain
tasks.

Revision 38 Page 51/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/wrapper-extensions
https://www.construct.net/out?u=https%3a%2f%2flearn.microsoft.com%2fen-us%2fmicrosoft-edge%2fwebview2%2f
https://www.construct.net/out?u=https%3a%2f%2fgithub.com%2fScirra%2fConstruct-Addon-SDK
https://www.construct.net/out?u=https%3a%2f%2fvisualstudio.microsoft.com%2fdownloads%2f

The sample in the SDK implements a wrapper extension that demonstrates
returning data from C++ back to JavaScript, and implements an action that calls
the Windows MessageBox API to show a message to the user.

Note that in a UWP app (for the Xbox UWP exporter), the DLL must be
configured as a Universal Windows DLL. See the Xbox Live UWP plugin
code on GitHub for an example of a wrapper extension configured this way.

In order to exchange messages, both the wrapper extension and the Construct
plugin must set the same component ID. This must uniquely identify your
plugin/extension combination. If any other plugin/extension uses the same
component ID, it will cause a conflict and one of the plugins will fail.

The wrapper extension should call iApplication-
>RegisterComponentId() in the WrapperExtension constructor to
register its component ID. The JavaScript plugin should call
this.SetWrapperExtensionComponentId() in its constructor to register

the same component ID. Then the two can exchange messages.

The JavaScript plugin should call
this.IsWrapperExtensionAvailable() after setting the component

ID to check that the wrapper extension is available. This is because it is
unavailable in other exporters, and also because it's possible that loading
the wrapper extension could fail for some reason. If the wrapper extension
is unavailable, async messages will return a promise that never resolves,
which could cause the project to hang. It's advisable to also provide an Is
available condition so users can check the plugin features are available in
their event sheets.

There are two kinds of ways messages can be sent from JavaScript to the
wrapper extension: a one-off message, and an async message.

A one-off message is a "fire and forget" scheme: a message will be sent but no
attempt is made to receive a result or identify if the operation completed.

A one-off message can be sent from JavaScript with a call
this.SendWrapperExtensionMessage("message-id",

[params...]) . The message ID identifies the kind of message. The second

Revision 38 Page 52/200

https://www.construct.net/out?u=https%3a%2f%2flearn.microsoft.com%2fen-us%2fwindows%2fwin32%2fapi%2fwinuser%2fnf-winuser-messagebox
https://www.construct.net/out?u=https%3a%2f%2fgithub.com%2fScirra%2fConstruct-Plugin-Xbox-Live-UWP

parameter is an optional array of parameters to pass with the message. These
must only be boolean, number or string type values. Messages sent from the
wrapper extension can be received with
this.AddWrapperExtensionMessageHandler("message-id",

handlerFunc) . The handler function is passed an object with a small amount of
JSON data sent from the wrapper extension.

A one-off message can be sent from the wrapper extension with a call like:

// C++
SendWebMessage("message-id", {
 { "sampleString1", "Hello world!" },
 { "sampleString2", "Foo bar baz" },
});

In this case the second parameter is a small amount of JSON data that is passed
to the JavaScript message handler. The keys must be strings, and the values may
only be boolean, number (double type to match JavaScript's number type), or
string. (Strings in the C++ SDK must be std::string or C-style LPCSTR in
UTF-8 encoding.)

Note: when reading JavaScript object properties sent from C++, be sure to
use the minify-proof string syntax (e.g. result["sampleString1"]),
as these properties come from an external source and so should not be
changed by the minifier. See Script minification for more details.

Wrapper extensions receive all messages from JavaScript to the same
HandleWebMessage() method. That method receives a string of the message

ID, and it's up to the wrapper extension to examine that string and respond
appropriately depending on the kind of message. The recommended architecture
is to use that method solely to distinguish the kind of message, unpack
parameters, and then call a dedicated handler method.

JavaScript can also send an asynchronous message to the wrapper extension.
(This is only supported for JavaScript - there is not currently any support for the
wrapper extension to send an asynchronous message to JavaScript.) This is done
by calling this.SendWrapperExtensionMessageAsync() which works
similarly to this.SendWrapperExtensionMessage() , except it returns a
promise that resolves when the wrapper extension responds to the message. It is
a useful way to retrieve data from the wrapper extension, including whether a
requested operation completed successfully. It can also be used on startup to

Revision 38 Page 53/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/script-minification

perform initialization work.

The wrapper extension receives asynchronous messages the same way as one-
off messages, except the asyncId parameter is set to a unique number for the
message. In order to respond to the message, it must call
SendAsyncResponse() passing the same asyncId the message was

received with, e.g.:

SendAsyncResponse({
 { "sampleString1", "Hello world!" },
 { "sampleString2", "Foo bar baz" },
}, asyncId);

The provided JSON data works the same as with SendWebMessage() , and is
used as the value that the JavaScript call to
SendWrapperExtensionMessageAsync() resolves with.

The wrapper extension must respond to asynchronous messages on all
codepaths, including in the event of an error. If it does not, the promise
returned by SendWrapperExtensionMessageAsync() will never
resolve, which could result in the project hanging.

It is recommended that as much of your plugin logic as possible is implemented in
JavaScript. Only send messages to the wrapper extension to make specific API
calls that aren't possible from JavaScript. This way it minimizes the amount of
platform-specific C++ code necessary, and ensures as much logic as possible
happens in the same place, rather than spread across two codebases. Also,
JavaScript is an easier programming language to work with, as it has easier-to-use
facilities for async code and avoids the need for manual memory management
(while still providing excellent performance).

For historical reasons, Windows APIs called from C++ that use strings generally
use "wide strings" with UTF-16 encoding. These are strings of "wide characters"
which are 16-bit types on Windows. This uses the wchar_t type for a
character, and std::wstring for the STL string equivalent (as well as types
like LPCWSTR for the C-style equivalent in Windows header files).

On the other hand, most modern software and recent C++ codebases use UTF-8
encoding. This uses the standard 8-bit char type and std::string in the

Revision 38 Page 54/200

https://www.construct.net/out?u=https%3a%2f%2fen.wikipedia.org%2fwiki%2fUTF-16
https://www.construct.net/out?u=https%3a%2f%2fen.wikipedia.org%2fwiki%2fUTF-8

STL (as well as types like LPCSTR for the C-style equivalent).

Remember that in both UTF-8 and UTF-16, a single "character" is in fact a
Unicode code unit and doesn't necessarily correspond to a single visible
character.

Consistent with the modern style, the wrapper extension SDK uses UTF-8
encoding when dealing with strings. However this means strings must be
converted when calling Windows APIs that use wide strings. The SDK provides
the utility methods Utf8ToWide() which converts a UTF-8 std::string
to a UTF-16 std::wstring suitable for passing to Windows APIs. The
c_str() method of STL strings also provides a C-style string that Windows

usually expects. The WideToUtf8() method can then also convert a UTF-16
std::wstring back to a UTF-8 std::string , suitable for converting

back wide strings returned by Windows APIs. The recommended approach is to
use UTF-8 everywhere, and only convert to UTF-16 to call a Windows API that
requires it; if the API call returns a UTF-16 string then it should immediately be
converted back to UTF-8. This means as much code as possible only uses UTF-8
and UTF-16 is used minimally solely to interact with Windows APIs.

The Windows WebView2 wrapper application also configures the process
code page to UTF-8. This makes it possible to directly call '-A' variant
Windows APIs (e.g. MessageBoxA()) with UTF-8 strings. However it is
only supported in Windows 10 version 1903 (May 2019 Update) and newer,
and may not be supported with all available Windows APIs. For more
information see the Microsoft documentation Use UTF-8 code pages in
Windows apps. While this option may be useful, particularly in future, for the
most straightforward and consistent approach we recommend continuing to
call all Windows APIs with wide strings in UTF-16 format.

There are real-world examples of using the wrapper extension SDK to integrate
SDKs on the Scirra GitHub account, including open-source plugins that integrate
the Steamworks SDK and the Epic Games Online Services (EOS) SDK. These
should help provide sample code that demonstrates how to build a useful wrapper
extension.

Revision 38 Page 55/200

https://www.construct.net/out?u=https%3a%2f%2flearn.microsoft.com%2fen-us%2fwindows%2fapps%2fdesign%2fglobalizing%2fuse-utf8-code-page
https://www.construct.net/out?u=https%3a%2f%2fgithub.com%2fScirra

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/porting-
c2-addons

To port a Construct 2 plugin or behavior to Construct 3, use the following
checklist.

Once complete, zip all the addon files and rename the .zip to .c3addon. You
should now have a addon you can install via the Addon Manager in Construct 3.

Start by copying the template SDK to a new folder.1

Update the addon metadata in addon.json.2

Update the icon. An SVG icon is preferable. The .ico files Construct 2 uses are
not supported in Construct 3, but you can use a PNG icon. Just delete icon.svg,
add icon.png, and call this._info.SetIcon("icon.png",
"image/png"); in the plugin/behavior constructor.

3

Update the plugin/behavior constants and identifiers in plugin.js/behavior.js,
type.js and instance.js, as described in configuring plugins/configuring behaviors.

4

Match your Construct 2 addon's configuration by making calls to
IPluginInfo/IBehaviorInfo in the addon constructor. For example if your Construct
2 plugin was a single-global plugin, the Construct 3 plugin should call
this._info.SetIsSingleGlobal(true); in the plugin constructor.

5

Add equivalent properties as the Construct 2 addon has. See Specifying plugin
properties in configuring plugins. (The process is identical for behaviors.)

6

Create corresponding action, condition and expression definitions. See defining
actions, conditions and expressions. The key point to ensure Construct 2 projects
using your addon can be imported to Construct 3 is:

7

Give every action, condition and expression a new id based on a string8

Also set the c2id property to the corresponding numeric ID that the
Construct 2 addon used

9

Update the language file to contain the UI strings for the addon, properties, and
ACEs.

10

You'll then need to port the runtime script to the C3 runtime, since Construct 3
introduced an entirely rewritten engine.

11

Revision 38 Page 56/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/porting-c2-addons
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-behaviors
https://www.construct.net/make-games/manuals/addon-sdk/reference/iplugininfo
https://www.construct.net/make-games/manuals/addon-sdk/reference/ibehaviorinfo
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/guide/defining-aces
https://www.construct.net/make-games/manuals/addon-sdk/guide/language-file

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/themes

Construct 3 allows theme addons, which simply add some custom stylesheets to
the document. This allows a great deal of flexibility in customising the appearance
of the Construct 3 editor. Any features of CSS can be used to alter the UI
appearance. You can use browser developer tools to identify the classes and
DOM structure used in the editor, and override the styles Construct 3 applies by
default in your own stylesheet.

Themes are based on the same .c3addon file that plugins and behaviors use,
although with fewer necessary files. As you can see in the theme SDK download,
all you need are lang/en-US.json, addon.json, an icon, and a stylesheet. Note
your addon metadata must also contain a list of stylesheets — this is just a
list of the CSS files to add to the document when your theme is applied.

As with other kinds of addon, you can test themes as developer addons for
quicker development.

Construct 3 uses a range of CSS variables (aka custom properties) to more
easily customise certain parts of the UI. These also allow customisation of
colors not in the DOM, such as the Layout View (which is rendered with
WebGL). The available CSS variables are listed in comments in the theme
SDK. Note colors in CSS variables must always be written in hex format
(#000000), except for layout view colors which can use rgba() syntax. (Other
CSS properties can use any syntax; only CSS variables are restricted, since
they are sometimes read from JavaScript.)

Avoid making significant alterations to layout. In many cases Construct 3's
code assumes certain layout of elements. Additionally it is time consuming to
test layout changes work across every part of the UI. For example Construct 3
has over 50 dialogs, and testing all the dialogs still appear correctly after a
change is a lot of work. On the other hand, cosmetic changes like colors and
borders are usually safe.

Be sure to also test your theme on mobile. Construct 3 uses different
paradigms and layouts in a number of places when adapting to smaller mobile
displays, and you should check your theme still appears correctly in that mode.

Be wary of styles that could have a performance impact. For example heavy
use of shadows, effects (such as blurs or other filters) or animations, could be
taxing on the CPU or GPU. Fewer people will use your theme if it slows down

Revision 38 Page 57/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/themes
https://www.construct.net/make-games/manuals/addon-sdk/guide/c3addon-file
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata
https://www.construct.net/make-games/manuals/addon-sdk/guide/using-developer-mode

their device, so try to make sure your styles are used efficiently.

Once you have installed a theme addon, you can start using it by selecting it from
the Settings dialog. Note this involves restarting Construct 3 twice: once when the
addon is installed, after which it appears in the Settings dialog, and then again
after selecting it in the Settings dialog.

Revision 38 Page 58/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/enabling-
developer-mode

Construct 3's Developer Mode enables extra testing features for developers, such
as a special addon testing mode.

To enable Developer Mode, open Construct 3's settings dialog and click or tap the
dialog caption 10 times. A prompt will appear asking if you want to show developer
mode settings. Click OK.

Now in the settings dialog there should be a checkbox named Enable developer
mode. Tick the checkbox, close the settings dialog and restart Construct 3. You
are now using Developer Mode.

Revision 38 Page 59/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/enabling-developer-mode
https://www.construct.net/make-games/manuals/addon-sdk/guide/using-developer-mode

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/using-
developer-mode

While developing an addon, it is inconvenient to have to package and install a new
.c3addon file every time you make a change. To make testing easier, you can load
an addon from a local web server. This means every time you reload Construct 3,
it re-loads the latest version of your addon from your local web server, saving you
from having to make any .c3addon packages. Developer mode also means
Construct reloads the addon files on every preview, making it much easier to
check changes to runtime code, but note that most of the time changing code that
affects the editor will still require a reload of the editor.

For these steps to work, you must first enable Developer Mode.

There are many ways to run a local web server, e.g. with a Chrome extension, or a
standalone server like nginx. Refer to your chosen server's documentation for
installation and configuration.

Your local web server must host on localhost. Construct 3 will refuse to load
addons from any other origin. You can host on any port, but it is recommended to
use a port in the ephemeral port range 49152-65535.

The local web server must serve all the addon files with CORS (Cross-Origin
Resource Sharing) enabled for Construct 3 to be able to load them, since it will be
making a cross-domain request. In practice this means adding this HTTP header
to the server response:

Access-Control-Allow-Origin: *

To do this you need to enable CORS if your web server provides a setting for that,
or manually specify the header. For example in nginx, add the following directive in
your server location section:

add_header Access-Control-Allow-Origin *;

You may also wish to review the caching headers to ensure your local server does

Revision 38 Page 60/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/using-developer-mode
https://www.construct.net/make-games/manuals/addon-sdk/guide/enabling-developer-mode
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fHTTP%2fAccess_control_CORS

not return old cached files. Disabling caching entirely will ensure Construct 3
always receives the latest files.

Once the server is fully configured, simply host the contents of the c3addon file in
a folder on your local web server. For example the URL
http://localhost:65432/myaddon/addon.json should serve the addon.json file for
your addon.

In modern browsers, http://localhost counts as a secure context
even though it does not use HTTPS. Therefore you should not need to set
up SSL/TLS for the local server.

Normally when files are extracted from the zip-format .c3addon file, Construct 3
can obtain a file list from the zip. However when loading from a local web server,
Construct 3 needs another way to identify all available files. So you must update
addon.json to include a complete file list. For more information see the section
Developer mode addons in Addon metadata.

The file list can be left in when distributing your .c3addon file — there's no need to
later remove it.

In Construct 3, open the Addon Manager. After enabling Developer Mode, there
should be a new button at the bottom labelled Add dev addon.... Click this button.
A dialog will appear asking for the URL to the addon's addon.json file on your local
web server. Enter its path, e.g. http://localhost:65432/myaddon/addon.json, and
press OK. If the addon.json file is reachable and parsed successfully, you'll see a
message indicating to restart Construct 3 to load the addon. If an error occurs,
check the browser console for more details.

Now every time you reload Construct 3, or preview a project using the addon, the
latest version of your addon is loaded from the local web server. This makes it
much quicker to test changes to your addon. For example if you make a change
that crashes Construct 3 on startup, there is no need to clear the browser cache
to remove the addon; you can simply fix the problem and reload C3. Similarly you
can adjust some runtime code and press preview, and your code changes will be
immediately reflected.

Your addon will appear in the Addon Manager as having a "Developer" source.
Revision 38 Page 61/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/c3addon-file
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata

Note "Developer" addons cannot be bundled with projects when using the Bundle
addons feature.

You can also uninstall your developer mode addon like any other addon, by right-
clicking it in the Addon Manager and selecting Uninstall.

Revision 38 Page 62/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/guide/safe-
mode

For normal addon development, you should use addon testing mode. This allows
quick iteration and you can easily fix addons even if they crash Construct 3 on
startup. However in some cases you may build a .c3addon package which
accidentally still crashes the editor on startup. To remove this addon, you can
clear your browser storage. Alternatively you can use Safe Mode in Construct 3,
which does not load third-party addons but still lists them in the Addon Manager
so they can be uninstalled.

To use Safe Mode, add ?safe-mode to the URL, e.g. editor.construct.net/?safe-
mode. Note all third-party addons are disabled in this mode. You should
immediately open the Addon Manager, uninstall the problematic addon, and then
restart Construct 3. Be sure to remove the ?safe-mode part of the URL to re-
enable loading third-party addons.

It is not recommended to open any projects or try to do any actual work in safe
mode: it exists only so you can reach the Addon Manager dialog to uninstall the
addon.

Revision 38 Page 63/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/safe-mode
https://www.construct.net/make-games/manuals/addon-sdk/guide/using-developer-mode
https://editor.construct.net/?safe-mode

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-
classes/ibehaviorinstancebase

The IBehaviorInstanceBase interface is used as the base class for
behavior instances in the SDK.

IBehaviorInstanceBase cannot be directly constructed; it should only be
used as a base class.

this._sdkBehaviorType
Reference to the associated SDK type class.

this._behaviorInstance
Reference to the IBehaviorInstance interface representing this instance in the
editor. This allows access to Construct's built-in features for behavior
instances.

OnPropertyChanged(id, value)
Optional override for when a property with the given ID is changed. The value
the property was changed to is also passed.

GetBehaviorInstance()
Return the IBehaviorInstance interface representing this instance in the editor.

GetSdkBehaviorType()
Return the associated SDK type class.

Revision 38 Page 64/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-classes/ibehaviorinstancebase
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ibehaviorinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ibehaviorinstance

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-
classes/iinstancebase

The IInstanceBase interface is used as the base class for instances in the
SDK. For "world" type plugins, instances instead derive from IWorldInstanceBase,
which itself derives from IInstanceBase .

IInstanceBase cannot be directly constructed; it should only be used as a
base class.

this._sdkType
Reference to the associated SDK type class.

this._inst
Reference to the IObjectInstance interface, or IWorldInstance interface for
"world" type plugins, representing this instance in the editor. This allows access
to Construct's built-in features for instances.

Release()
Optional override for when an instance is released.

OnCreate()
Optional override for when an instance is created in the editor.

OnPropertyChanged(id, value)
Optional override for when a property with the given ID is changed. The value
the property was changed to is also passed.

LoadC2Property(name, valueString)
Optional override to use custom logic for importing properties from a Construct
2 project referencing a Construct 2 version of this plugin.

GetProject()

Revision 38 Page 65/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-classes/iinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/reference/base-classes/iworldinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance

Return the IProject representing the instance's associated project.

GetObjectType()
Convenience method to return the IObjectType interface representing
Construct's object type class.

GetInstance()
Return the IObjectInstance corresponding to this instance.

Revision 38 Page 66/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-
classes/iworldinstancebase

The IWorldInstanceBase interface is used as the base class for instances
in the SDK for "world" type plugins. It derives from IInstanceBase.

IWorldInstanceBase cannot be directly constructed; it should only be used
as a base class.

OnPlacedInLayout()
Optional override called when an instance is explicitly placed in the layout by
the user. This is the right time to set any additional defaults such as the initial
size or origin.

Draw(iRenderer, iDrawParams)
Called when Construct wants the instance to draw itself in the Layout View.
iRenderer is an IWebGLRenderer interface, used for issuing draw

commands. iDrawParams is an IDrawParams interface, used for providing
additional information to the draw call.

GetTexture(animationFrame)
Load a texture from an IAnimationFrame. Texture loading is asynchronous and
is started in the first call. The method will return null while the texture is
loading. Construct will automatically refresh the Layout View when the texture
finishes loading, at which point the method will return an IWebGLTexture
interface that can be used for rendering. Plugins typically render a placeholder
of a semitransparent solid color while the texture is loading.

GetTexRect()
When a texture has successfully loaded, returns an SDK.Rect indicating the
dimensions of the image to render in texture co-ordinates. Note that due to
Construct's in-editor spritesheeting engine, this is usually a subset of a texture.

HadTextureError()
Returns true to indicate texture loading failed. Plugins typically switch the
placeholder to a red color in this circumstance.

Revision 38 Page 67/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-classes/iworldinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/reference/iinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/idrawparams
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

IsOriginalSizeKnown()
GetOriginalWidth()
GetOriginalHeight()

Optional overrides to specify the "original size" of the instance. Typically if a
plugin supports this, it is the size of the image. This enables percentage size
options in the Properties Bar. The default implementation returns false
from IsOriginalSizeKnown() , disabling the feature. To enable it, return
true from IsOriginalSizeKnown() , and return the original size in the
GetOriginalWidth() and GetOriginalHeight() methods.

HasDoubleTapHandler()
OnDoubleTap()

Optional override which is called when the user double-clicks or double-taps an
instance in the Layout View. This also enables an Edit option in the context
menu, which also calls the double-tap handler. Typically plugins with an image
use this handler to edit the image. The default implementation returns false
from HasDoubleTapHandler() , disabling the feature. To enable it, return
true from HasDoubleTapHandler() and then override
OnDoubleTap() to perform a task.

Revision 38 Page 68/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/geometry-interfaces/color

The Color interface represents a floating-point RGBA color in the SDK. It can
also be constructed independently as a general-purpose color class. Each color
component is normalized to the range [0, 1].

In the WebGL renderer, colors are normally required to have premultiplied alpha.
Some APIs already return premultiplied colors, but others may not; check the
documentation for any API methods returning colors to find out which are used.
Wherever possible avoid using the unpremultiply() method, since it is
lossy.

new SDK.Color();
new SDK.Color(r, g, b, a);

A Color can be constructed with no parameters, which defaults all
components to zero, or with given RGBA components.

setRgb(r, g, b)
Set the RGB components only, without affecting the alpha component, in a
single call.

setRgba(r, g, b, a)
Set the RGBA components of the color in a single call.

copy(color)
Set the components of the color by copying another SDK.Color .

copyRgb(color)
Set the RGB components only, without affecting the alpha component, by
copying another SDK.Color .

clone()
Return a new instance of an SDK.Color with an identical color to this one.

Revision 38 Page 69/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/geometry-interfaces/color

setR(r)
setG(g)
setB(b)
setA(a)

Set each component of the color individually. Note color components are floats
in the range [0, 1].

getR()
getG()
getB()
getA()

Get each component of the color individually.

equals(color)
Return a boolean indicating if this color exactly matches another
SDK.Color .

equalsIgnoringAlpha(color)
Return a boolean indicating if this color exactly matches the RGB components
of another SDK.Color . The alpha component is ignored.

equalsRgb(r, g, b)
Return a boolean indicating if this color exactly matches the given RGB
components.

equalsRgba(r, g, b, a)
Return a boolean indicating if this color exactly matches the given RGBA
components.

premultiply()
Multiply the RGB components by the A component. This is usually required for
rendering.

unpremultiply()
Divide the RGB components by the A component.

Avoid this method whenever possible, because it is lossy.
(Unpremultiplying a premultiplied color will lose some precision in the
RGB components and may not exactly match the original color.)

Revision 38 Page 70/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/geometry-interfaces/quad

The Quad interface represents a shape made from four points in the SDK.
Typically it is used to represent rotated rectangles. It is also the main primitive
used for rendering, by passing object's bounding quads to the WebGL renderer.

new SDK.Quad();
new SDK.Quad(tlx, tly, trx, try_, brx, bry, blx, bly);

A Quad can be constructed with no parameters, which defaults all co-ordinates
to zero, or with given positions for each point. The naming convention is tl for the
"top-left" point, tr for the "top-right" point, br for the "bottom-right" point, and bl for
the "bottom-left" point, followed by "x" or "y" for each component of the point. Note
that the points can appear at any orientation for rotated quads; the names only
correspond to their actual position when the quad is set to an unrotated rectangle.

The name try is a keyword in JavaScript, so the "top-right Y" component
is named with an underscore as try_ to avoid colliding with the keyword.

set(tlx, tly, trx, try_, brx, bry, blx, bly)
Set all four points of the quad in a single call.

setRect(left, top, right, bottom)
Set the quad's points to represent an axis-aligned rectangle using the given
positions. Note that this is only useful if you subsequently make further
modifications to the quad, else you may as well use the Rect interface.

copy(quad)
Set all points of the quad by copying another SDK.Quad .

setTlx(n)
setTly(n)
setTrx(n)

Revision 38 Page 71/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

setTry(n)
setBrx(n)
setBry(n)
setBlx(n)
setBly(n)

Set each point of the quad individually.

getTlx()
getTly()
getTrx()
getTry()
getBrx()
getBry()
getBlx()
getBly()

Get each point of the quad individually.

setFromRect(rect)
Set the points of the quad to an axis-aligned rectangle given by an SDK.Rect.
Note that this is only useful if you subsequently make further modifications to
the quad, else you may as well use the Rect interface directly.

setFromRotatedRect(rect, angle)
Set the points of the quad to a rotated rectangle given by an SDK.Rect, rotated
about the origin by angle in radians.

getBoundingBox(rect)
Calculate the bounding box of the quad, and store the result by writing to a
given SDK.Rect.

midX()
midY()

Return the average of the four points in the quad on each axis.

intersectsSegment(x1, y1, x2, y2)
Test if a segment, given as the line between points (x1, y1) and (x2, y2),
intersects this quad, returning a boolean.

intersectsQuad(quad)
Test if another SDK.Quad intersects this quad, returning a boolean.

containsPoint(x, y)
Revision 38 Page 72/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

Test if the given point is inside the bounds of this quad, returning a boolean.

Revision 38 Page 73/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/geometry-interfaces/rect

The Rect interface represents an axis-aligned rectangle in the SDK. It can also
be constructed independently as a general-purpose geometry class.

new SDK.Rect();
new SDK.Rect(left, top, right, bottom);

A Rect can be constructed with no parameters, which defaults all co-ordinates
to zero, or with given positions for the left, top, right and bottom positions.

set(left, top, right, bottom)
Set all sides of the rectangle in one call.

copy(rect)
Set all sides of the rectangle by copying another SDK.Rect .

clone()
Return a new instance of an SDK.Rect with identical values to this one.

setLeft(left)
setTop(top)
setRight(right)
setBottom(bottom)

Set the position of each side of the rectangle individually.

getLeft()
getTop()
getRight()
getBottom()

Get the positition of each side of the rectangle individually.

width()
height()

Revision 38 Page 74/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

Get the width or height of the rectangle. Note if the right edge is to the left of the
left edge, or the bottom edge above the top edge, this will return a negative size.

midX()
midY()

Return the average of the left and right, or top and bottom, positions.

offset(x, y)
Add x to the left and right positions, and y to the top and bottom positions,
offsetting the entire rectangle.

inflate(x, y)
deflate(x, y)

Expand or shrink the rectangle using the given offsets. Inflating subtracts from
the left and top edges and adds to the right and bottom edges, and deflating
does the opposite.

multiply(x, y)
divide(x, y)

Multiply or divide each position by a given factor on each axis.

clamp(left, top, right, bottom)
Clamp each position in the rectangle to a given value, ensuring the rectangle
does not extend beyond the bounds of the passed rectangle.

normalize()
Normalize the rectangle positions, swapping the left-right positions if the right
position is on the left, and swapping the top-bottom positions if the bottom
position is on the top. This ensures the width and height are positive.

intersectsRect(rect)
Test for an intersection with another SDK.Rect , returning a boolean
indicating if it intersects.

containsPoint(x, y)
Test if the given point is inside the bounds of this rectangle, returning a
boolean.

Revision 38 Page 75/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/graphics-interfaces/idrawparams

The IDrawParams interface provides additional parameters to a Draw() call
in the SDK.

This interface cannot be directly constructed. It is only available in the Draw()
call.

GetDt()
Return delta-time, the time since the last frame, in seconds. This is typically
approximately 1/60th of a second (0.01666...). This value is only valid when the
Layout View is continually scrolling, such as when dragging an instance to the
edge of the Layout View window. Any other time it will be set to a dummy non-
zero value, since there wasn't a frame immediately preceding the current one.

GetLayoutView()
Return an ILayoutView interface representing the current Layout View being
drawn. This allows access to features of the Layout View in drawing code.

Revision 38 Page 76/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/graphics-interfaces/idrawparams
https://www.construct.net/make-games/manuals/addon-sdk/reference/ui-interfaces/ilayoutview

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/graphics-interfaces/iwebglrenderer

The IWebGLRenderer interface provides methods for rendering to the Layout
View, which is rendered using a WebGL canvas. The interface's methods provide
high-level drawing commands implemented by Construct, so you don't need to
handle low-level concerns like vertex buffers.

This interface cannot be directly constructed. It is only available as a parameter to
a Draw() call.

Since IWebGLRenderer is based on WebGL, it also uses a persistent rendering
state. Therefore to correctly render something, all the intended state must be
specified, otherwise it will use an undefined previous state. IWebGLRenderer
simplifies the renderer state to:

Therefore a Draw() method should begin by specifying the blend mode, the fill
mode, the color, and the texture (if texture fill mode is used), before continuing to
draw. The renderer efficiently discards redundant calls, so if the state does not
actually change then these calls have minimal performance overhead.

Once all state is set up, quads can be issued using one of the Rect() or
Quad() method overloads. These methods draw using the currently set state.

SetAlphaBlendMode()
Set the blend mode to a premultiplied alpha blending mode.

A blend mode. Typically a normal alpha blend mode is used.1

A fill mode (internally, the current fragment shader). The fill modes can be color fill
(draw a solid color), texture fill (draw a texture), and smooth line fill (for drawing
smooth lines).

2

A color set by SetColor() or SetColorRgba() . The alpha component of
the color is used as the opacity in texture fill mode.

3

A texture set by SetTexture() . This is only used in texture fill mode.4

Revision 38 Page 77/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer

SetColorFillMode()
Set the fill mode to draw a solid color, specified by the current color.

SetTextureFillMode()
Set the fill mode to draw a texture, specified by the current texture, and using
the alpha component of the current color as the opacity.

SetSmoothLineFillMode()
Set the fill mode to draw smooth lines using the current color.

SetColor(color)
Set the current color with an SDK.Color.

SetColorRgba(r, g, b, a)
Set the current color by directly passing the RGBA components.

SetOpacity(o)
Set only the alpha component of the current color. Note this does not affect the
RGB components.

SetCurrentZ(z)
GetCurrentZ()

Set and get the current Z component used for all 2D drawing commands that
don't specify Z components, such as the Rect2() and Quad3() .

ResetColor()
Set the current color to (1, 1, 1, 1).

Rect(rect)
Draw a rectangle given by an SDK.Rect.

Rect2(left, top, right, bottom)
Draw a rectangle by directly passing the left, top, right and bottom positions.

Quad(quad)
Draw a quad given by an SDK.Quad.

Quad2(tlx, tly, trx, try_, brx, bry, blx, bly)
Draw a quad by directly passing the positions of each of the four points in the
quad.

Quad3(quad, rect)
Revision 38 Page 78/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad

Draw a quad given by an SDK.Quad, using an SDK.Rect for the source texture
co-ordinates to draw from.

Quad4(quad, texQuad)
Draw a quad given by an SDK.Quad, using another SDK.Quad for the
source texture co-ordinates to draw from.

Quad3D(tlx, tly, tlz, trx, try_, trz, brx, bry, brz, blx, bly, blz, rect)
Quad3D2(tlx, tly, tlz, trx, try_, trz, brx, bry, brz, blx, bly, blz, texQuad)

Draw a 3D quad, specifying all four points of the quad with X, Y and Z co-
ordinates. The first overload accepts texture co-ordinates via an SDK.Rect rect,
and the second accepts texture co-ordinates via an SDK.Quad texQuad.

ConvexPoly(pointsArray)
Draw a convex polygon using the given array of points, in alternating X, Y
order. Therefore the size of the array must be even, and must contain at least
six elements (to define three points).

Line(x1, y1, x2, y2)
Draws a quad from the point (x1, y1) to (x2, y2) with the current line width.

TexturedLine(x1, y1, x2, y2, u, v)
Draws a quad from the point (x1, y1) to (x2, y2) with the current line width, and
using (u, 0) as the texture co-ordinates at the start, and (v, 0) as the texture co-
ordinates at the end.

LineRect(left, top, right, bottom)
Draws four lines along the edges of a given rectangle.

LineRect2(rect)
Draws four lines along the edges of a given SDK.Rect .

LineQuad(quad)
Draws four lines along the edges of a given SDK.Quad .

PushLineWidth(w)
PopLineWidth()

Set the current line width for line-drawing calls. This must be followed by a
PopLineWidth() call when finished to restore the previous line width.

PushLineCap(lineCap)
PopLineCap()

Revision 38 Page 79/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad

Set the current line cap for line-drawing calls. This must be followed by a
PopLineCap() call when finished to restore the previous line cap. The

available line caps are "butt" and "square" .

SetTexture(texture)
Set the current texture to a given IWebGLTexture.

CreateWebGLText()
Return a new IWebGLText interface. This manages text wrapping, drawing text,
and uploading the results to a WebGL texture.

CreateDynamicTexture(width, height, opts)
Create a new empty IWebGLTexture for dynamic use, i.e. expecting the texture
content to be replaced using UpdateTexture() . The size of the texture is
given by width and height which must be positive integers. opts
specifies options for the texture which is an object that can include the following
properties:

wrapX : the texture horizontal wrap mode: one of "clamp-to-edge" ,
"repeat" , "mirror-repeat"

wrapY : as with wrapX but for the vertical wrap mode

sampling : the texture sampling mode, one of "nearest" ,
"bilinear" or "trilinear" (default)

pixelFormat : the texture pixel format, one of "rgba8" (default),
"rgb8" , "rgba4" , "rgb5_a1" or "rgb565"

mipMap : boolean indicating if mipmaps should be used for this texture,
default true

mipMapQuality : if mipMap is true, one of "default" (default),
"low" or "high"

UpdateTexture(data, texture, opts)
Upload data as the new texture contents for the IWebGLTexture texture. This
can only be used for textures created with CreateDynamicTexture() and
managed by your addon.

Revision 38 Page 80/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltext
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture

data can be one of the following types: HTMLImageElement ,
HTMLVideoElement , HTMLCanvasElement , ImageBitmap ,
OffscreenCanvas or ImageData . Note in worker mode the DOM types

cannot be used (HTMLImageElement , HTMLVideoElement ,
HTMLCanvasElement); in this case use ImageBitmap or
OffscreenCanvas instead. This method cannot resize an existing texture,

so the data must match the size the texture was created with; if the size needs
to change, destroy and re-create the texture.
opts specifies options for the texture upload which is an object that can include
the following properties:

premultiplyAlpha : a boolean indicating whether to premultiply alpha of
the image content specified by data (default true). Construct always renders
using premultiplied alpha so this is normally necessary; however if the data
is known to already be premultiplied, set this to false.

DeleteTexture(texture)
Delete a IWebGLTexture, releasing its resources. This can only be used for
textures created with CreateDynamicTexture() and managed by your
addon. Do not attempt to delete textures managed by the Construct engine.

Revision 38 Page 81/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/graphics-interfaces/iwebgltext

The IWebGLText interface manages text wrapping, drawing text to a canvas,
and then uploading the result to a WebGL texture. This makes it easy to display
text in a WebGL renderer. It is created via the IWebGLRenderer
CreateWebGLText() method.

Release()
Destroy the object and its resources. IWebGLText must be released when it
is no longer needed; do not simply drop references, otherwise not all of its
resources will be collected. If your plugin creates an IWebGLText, it should
release any it still uses in its own Release() method.

SetFontName(name)
Set the name of the font face used for drawing text.

SetFontSize(ptSize)
Set the size of the font, in points, used for drawing text.

SetLineHeight(px)
Set the extra line height spacing, in pixels, used for drawing text. Note 0 is the
default, indicating no offset to the default line height.

SetBold(b)
Set the bold flag used for drawing text.

SetItalic(i)
Set the italic flag used for drawing text.

SetColor(color)
Set the color of the text using a SDK.Color or a string. If a string is passed, it is
passed directly to a 2D canvas fillStyle property, so can be anything
that property accepts, e.g. "red", "#00ffee", "rgb(0, 128, 192)" etc.

SetColorRgb(r, g, b)
Set the color of the text using separate RGB components.

Revision 38 Page 82/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltext
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color

SetHorizontalAlignment(h)
Set the horizontal alignment of the text within its bounding box. This can be one
of "left" , "center" or "right" .

SetVerticalAlignment(v)
Set the vertical alignment of the text within its bounding box. This can be one of
"top" , "center" or "bottom" .

SetWordWrapMode(m)
Set the word wrapping mode. This can be one of "word" (for space-
delimited word wrapping) or "character" (for wrapping on any character).

SetText(text)
Set the text string to be drawn.

SetSize(width, height, zoomScale)
Set the size of the area that text can be drawn in. The size is specified in CSS
pixels. The zoomScale can be increased to render the text at a higher
resolution, which is useful when zooming in the Layout View.

GetTexture()
Get an IWebGLTexture interface representing the texture with the requested
text rendered on to it. Note: the texture is generated asynchronously, so can
return null when first requested. Use SetTextureUpdateCallback()
to get a callback when the texture has updated, where the relevant Layout View
can be redrawn to render with the updated texture.

GetTexRect()
Return a SDK.Rect representing the content area of the text on the WebGL
texture. This is the subset of the texture that ought to be rendered. Note: this is
only valid when GetTexture() returns a non-null result.

SetTextureUpdateCallback(callback)
Set a function to call when the texture containing the rendered text is updated.
Since the texture is generated asynchronously, this is necessary to know when
to redraw any views that may be displaying the text, so they can redraw with the
updated texture.

ReleaseTexture()
Release the underlying WebGL texture. This can be used to save memory.
However the texture will be re-created the next time GetTexture() is
called.

Revision 38 Page 83/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

GetTextWidth()
GetTextHeight()

Return the size of the text bounding box after processing word wrap. This
allows determining the size of the actual visible text, rather than the box used
for word wrap bounds.

Revision 38 Page 84/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/graphics-interfaces/iwebgltexture

The IWebGLTexture interface represents a texture in the WebGL renderer.

This interface cannot be directly constructed. It is only available through other
APIs.

GetWidth()
GetHeight()

Return the width or height of the texture. Note this refers to the source texture.
Construct's in-editor spritesheeting engine means the texture could be
significantly larger than an object's image to be rendered from it.

Revision 38 Page 85/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-
interfaces/ilang

The ILang interface allows for looking up translated strings in the language file.

Only look up language strings from your own addon. Any other strings in the
language file are subject to change at any time.

PushContext(prefix)
Push a prefix to the context stack. For example PushContext("foo")
followed by Get(".bar") will return the same string as if
Get("foo.bar") were used. Pushing a context beginning with a dot will

append to the current prefix, but pushing an entry not beginning with a dot will
reset the current prefix. Note: be sure to always call PopContext()
afterwards.

PopContext()
Pop a prefix from the context stack.

Get(context)
Look up a string in the language file. If the context begins with a dot, it is
relative to the current context prefix. Otherwise it is treated as an absolute
context.

For convenience Construct also adds this method as a global function
self.lang() .

Revision 38 Page 86/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-interfaces/ilang

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-
interfaces/izipfile

The IZipFile interface represents a zip file in the SDK. It allows access to the
file list and reading files contained within the zip.

PathExists(path)
Return a boolean indicating if a given path exists within the zip.

GetFileList()
Return an array of all file paths contained within the zip.

GetFirstEntryWithExtension(ext)
Return a IZipFileEntry representing the first entry found with a given file
extension, or null if none was found.

GetEntry(path)
Return a IZipFileEntry representing the file at the given path. If the path does
not exist in the zip, this returns null .

ReadText(entry)
Return a promise that resolves with the contents of the given IZipFileEntry read
as plain text.

ReadJson(entry)
Return a promise that resolves with the contents of the given IZipFileEntry,
read as plain text and then parsed as JSON.

ReadBlob(entry)
Return a promise that resolves with the contents of the given IZipFileEntry,
read as a Blob . (This is a raw binary format that can be read with other
JavaScript APIs.)

The returned blob will have name and lastModified properties
added, reflecting the properties of the file in the zip.

Revision 38 Page 87/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfile
https://www.construct.net/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfileentry
https://www.construct.net/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfileentry

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-
interfaces/izipfileentry

The IZipFileEntry interface is an opaque reference to an file entry in
IZipFile. It has no methods - instead, simply pass it to one of the other methods in
IZipFile.

Revision 38 Page 88/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfileentry
https://www.construct.net/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfile

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/ieventblock

The IEventBlock interface represents an event block in the event sheet.
Event blocks are the most important kind of event, and consist of a number of
conditions, actions to run when the conditions are met, and optionally further sub-
events. It derives from IEventParentRow.

The following code sample demonstrates the calls necessary to add an On start of
layout event to the associated event sheet for a given ILayoutView. This is useful
with the Custom Importer API, since the AddDragDropFileImportHandler callback
provides the ILayoutView that content was dropped in to.

// Note: this code is assumed to be in an async function
// First get the associated event sheet for the layout view
const eventSheet = layoutView.GetLayout().GetEventSheet();
if (eventSheet) // note the layout may not have an event sheet
{
 // Get the IObjectType for the System plugin
 const systemType = eventSheet.GetProject().GetSystemType();

 // Create an empty event block at the root level of the event shee
t
 const eventBlock = await eventSheet.GetRoot().AddEventBlock();

 // Add an 'On start of layout' condition
 eventBlock.AddCondition(systemType, null, "on-start-of-layout");

 // Example code for adding a 'Set position' action
 //eventBlock.AddAction(iObjectType, null, "set-position", [100, 20
0]);
}

Some developer methods are available to explore the list of condition and action

Revision 38 Page 89/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ieventblock
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ieventparentrow
https://www.construct.net/make-games/manuals/addon-sdk/reference/ui-interfaces/ilayoutview
https://www.construct.net/make-games/manuals/addon-sdk/reference/ui-interfaces/utilities

IDs that can be used to create events with. See Finding addon IDs for more
information.

AddCondition(iObjectClass, reserved, cndId, params)
AddAction(iObjectClass, reserved, actId, params)

Add a condition or action to this event block. These methods are very similar so
they are documented together. iObjectClass must be an IObjectClass (i.e. an
IObjectType or IFamily) to create the condition and action for. The next
parameter is reserved for future use; you must pass null . cndId or actId
must be a string specifying the condition or action to create; for example the
System On start of layout condition ID is "on-start-of-layout" . If the
condition or action uses any parameters, then params must be an array with
enough elements for every parameter. Each parameter can be a string, number
or IObjectType. Expression parameters use a string, which can be any valid
expression (including calculations like "1+1" for number parameters); if you
pass a number, it will be converted to a string. IObjectClass can also be passed
for object parameters.

Revision 38 Page 90/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/finding-addon-ids
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectclass
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/ieventparentrow

The IEventParentRow interface is a base class representing any row in the
event sheet that can have other events nested beneath it. For example an event
group is a parent row since it can have other events nested inside it, but an event
comment is not a parent row, because nothing can be nested inside it. Note that
the root node of the event sheet is a parent row.

async AddEventBlock()
Add an empty child event block, with no conditions or actions. Returns a
promise resolving with the created IEventBlock.

Revision 38 Page 91/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ieventparentrow
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ieventblock

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/ieventsheet

The IEventSheet interface represents an event sheet in the project model.

Since events can be nested underneath each other, they are represented
as a tree. GetRoot() returns the root node of the tree.

GetProject()
Return the associated IProject.

GetName()
Return the name of the event sheet.

GetRoot()
Return the root node of the event sheet. This is an IEventParentRow
representing the top level of the event sheet.

Revision 38 Page 92/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ieventsheet
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ieventparentrow

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/ilayer

The ILayer interface represents a layer in the project model.

GetName()
Return the name of the layer.

GetLayout()
Return the ILayout this layer belongs to.

Revision 38 Page 93/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayer
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayout

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/ilayout

The ILayout interface represents a layout in the project model. Note that
ILayoutView represents the editor view, but ILayout represents the layout in the
project.

GetProject()
Return the associated IProject.

GetName()
Return the name of the layout.

GetAllLayers()
Return an array of ILayer representing all the layers on this layout.

GetEventSheet()
Return the IEventSheet assigned for this layout. Note that layouts do not have
to have an event sheet assigned, so this can return null .

Revision 38 Page 94/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayout
https://www.construct.net/make-games/manuals/addon-sdk/reference/ui-interfaces/ilayoutview
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayer
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ieventsheet

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/iproject

The IProject interface provides access to a project from the SDK.

GetName()
Return the project name.

GetObjectTypeByName(name)
GetFamilyByName(name)
GetObjectClassByName(name)

Look up an object class by a case-insensitive string of its name, returning
either an IObjectType (for GetObjectTypeByName), an IFamily (for
GetFamilyByName), or either (for GetObjectClassByName), or null if not
found.

GetObjectClassBySID(sid)
Look up an object class by its SID (Serialization ID), returning either an
IObjectType or IFamily, or null if not found.

"object" type properties store the SID of the chosen object class, so this
method allows identifying the corresponding object class in the editor.

CreateObjectType(pluginId, name)
Add a new object type to the project. Returns a promise that resolves with an
IObjectType representing the new object type. See Finding addon IDs to get a
list of possible plugin IDs that can be used. name is the requested name to
use for the object type. If the name is free, it will be used directly; however if the
name is already in use, Construct will change the name to one which is
available. Call GetName() on the returned IObjectType to determine what
name it was assigned.

GetSystemType()
Return an IObjectType representing the System plugin, which exists in every
project.

GetSingleGlobalObjectType(pluginId)
Revision 38 Page 95/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/finding-addon-ids
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype

Return an IObjectType representing a single-global plugin in the project.
Returns null if the given plugin ID does not exist, is not a single-global
plugin, or the plugin has not been added to the project. See Finding addon IDs
to get a list of possible plugin IDs that can be used.

CreateFamily(name, members)
Create a new family in the project. name is an optional family name (pass
null to use a default name). members must be an array of IObjectType

representing the object types to add to the family. Families must be created with
at least one object type, and if they have multiple object types, they must all be
from the same kind of plugin (e.g. all Sprites). Returns an IFamily representing
the created family.

GetInstanceByUID(uid)
Look up an instance by its UID (Unique ID), returning either a IObjectInstance
or IWorldInstance depending on the kind of instance, or null if not found.

GetProjectFileByName(name)
Look up a project file by a case-insensitive string of its filename, returning an
IProjectFile if found, else null .

GetProjectFileByExportPath(path)
Look up a project file by a string of its path after export, returning an IProjectFile
if found, else null . Note the path after export depends on the project Export
file structure setting. In the legacy Flat mode, file paths are always at the root
level (even if in a subfolder in the Project Bar) and names are case-insensitive.
In the modern Folders mode, file paths correspond to the subfolders in the
Project Bar and are case-sensitive. This method is useful for being able to
identify in the editor the project file that corresponds to a relative URL in the
runtime.

AddOrReplaceProjectFile(blob, filename, kind = "general")
Create a new project file in the project, or replace the content of the file if it
already exists, using a Blob for the file content and a string for the filename.
The kind defaults to "general" , which causes the file to be placed in the
"Files" folder in the Project Bar. Other options are "sound" , "music" ,
"video" , "font" and "icon" .

ShowImportAudioDialog(fileList)
Bring up the Import audio dialog to import a list of audio files given in
fileList . This will automatically transcode the audio files to WebM Opus

(when supported for the audio formats), which is the main format Construct
Revision 38 Page 96/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/finding-addon-ids
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/iprojectfile
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/iprojectfile

uses. Prefer importing PCM WAV files to ensure transcoding is supported and
is lossless. The file list should be an array of Blob or File ; if blobs, then
ensure a name property is assigned to the blob object to indicate the
intended filename.

Reading blobs from IZipFile automatically assigns a name property so
the blobs can be directly passed to this method.

EnsureFontLoaded(f)
Make sure a given font name is loaded so it can be used when drawing text.
This is necessary for plugins that render text.

UndoPointChangeObjectInstancesProperty(instances, propertyId)
Create a new undo point that undoes changes to propertyId .
instances must be either an IObjectInstance or an array of

IObjectInstance. Call this method before changing an instance's property value
and the action will be undoable.

Revision 38 Page 97/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfile
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/model-interfaces/iprojectfile

The IProjectFile interface represents a project file added in the Project Bar
in Construct.

GetName()
Return the filename of the project file.

GetProject()
Return the IProject the project file belongs to.

GetBlob()
Return a Blob representing the contents of the file. The standard web APIs for
reading blobs can be used to access the content.

Revision 38 Page 98/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/iprojectfile
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fBlob

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/ianimation

The IAnimation interface represents an animation within an animated object
type. This is only applicable to animated plugins such as Sprite.

GetName()
Return a string of the animation name.

GetObjectType()
Return the IObjectType that this animation belongs to.

GetFrames()
Return an array of IAnimationFrame representing the frames in this animation.

AddFrame(blob, width, height)
Add a new animation frame to the animation. All the parameters are optional.
There are four overloads of this method:

The method returns a promise that resolves with the added IAnimationFrame.

SetSpeed(s)
GetSpeed()

Set and get the animation speed in animation frames per second.

SetLooping(l)

No parameters passed: add an empty animation frame with a default size1

Blob passed with no size: use the blob as the animation frame image file, and
decompress the image to determine the size

2

Blob passed with size: use the blob as the animation frame image file and use
the provided size (which must be correct) to skip having to decompress the
image to find its size

3

No blob passed but size provided: use the size for the empty animation frame4

Revision 38 Page 99/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ianimation
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe

IsLooping()
Set and get the looping flag for the animation, indicating if the animation will
repeat.

SetPingPong(p)
IsPingPong()

Set and get the ping-pong flag for the animation, indicating if the animation will
repeat alternating forwards and backwards.

SetRepeatCount(r)
GetRepeatCount()

Set and get the number of times the animation is set to repeat.

SetRepeatTo(f)
GetRepeatTo()

Set and get the animation frame index to return to when repeating the
animation. This must be a valid index.

Delete()
Immediately deletes this animation from its object without any confirmation
prompt. This cannot be undone.

The last animation is not allowed to be deleted. Construct requires that
animated objects have at least one animation.

Use this with care as it does not warn the user and cannot be undone.

Revision 38 Page 100/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/ianimationframe

The IAnimationFrame interface represents an image for an object type.
Despite the name, this interface is also used if the plugin uses a single image, like
Tiled Background does.

Note IAnimationFrame cannot be directly rendered. You must first create a
texture from it.

This interface provides methods for loading a texture, but you don't normally
need to use them. Simply pass the IAnimationFrame to
IWorldInstanceBase's GetTexture() method, which provides a default
implementation using these methods.

GetObjectType()
Return the associated IObjectType interface.

GetWidth()
GetHeight()

Return the size of the image, in pixels.

GetCachedWebGLTexture()
Return an IWebGLTexture interface if the texture is already loaded, else
null .

GetTexRect()
Return an SDK.Rect representing the texture co-ordinates of this image on the
loaded texture. This can only be called if GetCachedWebGLTexture()
returned a texture.

async LoadWebGLTexture()
Start asynchronously loading a texture for this image. This should only be used
if GetCachedWebGLTexture() returned null . Returns a promise that

Revision 38 Page 101/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe
https://www.construct.net/make-games/manuals/addon-sdk/reference/base-classes/iworldinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

resolves with a IWebGLTexture representing the loaded texture.

ReplaceBlobAndDecode(blob)
Replace the image content of the animation frame with the given blob. The blob
will be decoded as an image and the previous content of the animation frame
overwritten with the image content of the blob. This may also change the size of
the frame. Returns a promise that resolves when the image content has been
updated.

SetDuration(d)
GetDuration()

Set and get the individual frame duration. This is a multiplier, e.g. 1 for normal
speed, 2 for twice as long, etc.

SetOriginX(x)
SetOriginY(y)
GetOriginX()
GetOriginY()

Set and get the origin for this image. The origin is specified in texture co-
ordinates, i.e. from 0 to 1. The default is 0.5, indicating the middle of the image.

GetImagePoints()
Return an array of IImagePoint representing the image points added to the
image.

AddImagePoint(name, x, y)
Add a new image point to the image with the specified name and position. As
with the origin, image point positions are specified in texture co-ordinates, i.e.
from 0 to 1. Returns an IImagePoint representing the added image point.

GetCollisionPoly()
Return the ICollisionPoly representing the image's collision polygon.

Delete()
Immediately deletes this frame from its animation without any confirmation
prompt. This cannot be undone.

The last frame is not allowed to be deleted. Construct requires that
animations have at least one frame.

Use this with care as it does not warn the user and cannot be undone.

Revision 38 Page 102/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebgltexture
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iimagepoint
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iimagepoint
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/icollisionpoly

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/ibehaviorinstance

The IBehaviorInstance interface represents a behavior instance in
Construct.

GetProject()
Return the IProject representing the behavior instance's associated project.

GetObjectInstance()
Returns an IObjectInstance or IWorldInstance (depending on the type of
object) of the object instance associated with this behavior instance.

GetPropertyValue(id)
Get the value of a behavior property for this behavior instance by its property
ID.

SetPropertyValue(id, value)
Set the value of a behavior property for this instance by its property ID.

GetExternalSdkInstance()
Return the custom behavior-specific SDK editor instance class for this
behavior instance, which will be a derivative of IBehaviorInstanceBase. For
example if called for a behavior instance of the addon SDK's sample behavior,
this would return the MyCustomBehaviorInstance class. This method
can only be used for installed addons - it will return null for any built-in
behaviors.

Be careful if taking a dependency on a behavior class provided by
another developer. Make sure to only use documented and supported
methods. If you use features which are changed or removed by a future
addon update, then your addon may crash the editor. Scirra will not
provide support for crashes involving third-party addons and we will
direct affected users to contact the addon developer.

Revision 38 Page 103/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ibehaviorinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-classes/ibehaviorinstancebase

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/ibehaviortype

The IBehaviorType interface represents a behavior type in Construct. A
behavior type is the behavior equivalent of an object type: when a behavior is
added to an object type, there is one behavior type created on the object type, and
one behavior instance created per object instance.

GetProject()
Return the IProject representing the behavior type's associated project.

GetName()
Returns a string of the behavior type name.

Revision 38 Page 104/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ibehaviortype
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/icollisionpoly

The ICollisionPoly interface represents the collision polygon for an
IAnimationFrame. It is represented as a list of numbers representing points
connected in a loop. As with image points, the collision polygon points are
specified in texture co-ordinates, i.e. from 0 to 1.

Reset()
Reset the collision polygon to the default, which matches the bounding box of
the object.

IsDefault()
Return a boolean indicating if the collision polygon is set to the default,
matching the bounding box of the object.

GetPoints()
Return an array of numbers representing the points in the collision polygon.
The array elements are alternating X and Y components for the points, so its
size is always even. The collision polygon is guaranteed to have at least three
points.

SetPoints(arr)
Set the collision polygon points by passing an array of numbers. The array
elements must be alternating X and Y components for the points, so its size
must be even. There must be at least three points in a collision polygon,
therefore the passed array must have at least 6 elements.

Revision 38 Page 105/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/icollisionpoly
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/icontainer

The IContainer interface represents a container in Construct, which is a
group of object types that are always created, destroyed and picked together.

GetMembers()
Return an array of IObjectType representing the object types in the container.
Containers always have at least two members.

SetSelectMode(m)
GetSelectMode()

Set or get the select mode of the container, corresponding to the Select mode
property in Construct. Allowed modes are "normal" , "all" and
"wrap" .

RemoveObjectType(objectType)
Remove a member IObjectType from this container.

A container must have at least two object types. If the second-last
member is removed, the container becomes inactive and is effectively
deleted. The last remaining member will also act as if it's no longer in a
container.

IsActive()
Return a boolean indicating if the container is active. It becomes inactive if
there are fewer than the minimum required two members, at which point it is
effectively deleted.

Revision 38 Page 106/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/icontainer
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/ifamily

The IFamily interface represents a family in Construct, which is a group of
object types that can be treated as one. All object types in the family must be from
the same plugin. It derives from IObjectClass. Families can be created in the SDK
using IProject. CreateFamily() .

GetMembers()
Return an array of IObjectType representing the object types in the family.

SetMembers(objectTypes)
Set the members of the family by passing an array of IObjectType. Note all the
specified object types must be compatible with the family, including using the
same plugin, and not having any naming conflicts between instance variables,
behaviors and effects.

Revision 38 Page 107/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectclass
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/iimagepoint

The IImagePoint interface represents an image point on an
IAnimationFrame.

GetAnimationFrame()
Return the associated IAnimationFrame.

SetName(name)
GetName()

Set or get the name of the image point.

SetX(x)
SetY(y)
GetX()
GetY()

Set or get the position of the image point in texture co-ordinates, i.e. from 0 to 1.

Revision 38 Page 108/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iimagepoint
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/iobjectclass

The IObjectClass interface is the base class of IObjectType and IFamily.

IObjectClass cannot be created directly. However any parameter that
accepts an IObjectClass can accept any derivative, i.e. an object type or a
family.

GetName()
Return the name of the object class.

GetProject()
Return the IProject representing the object class's associated project.

Delete()
Immediately deletes this object class from the project without any confirmation
prompt. All events referencing it will also be removed. This cannot be undone.

Use this with care as it does not warn the user and cannot be undone.

Revision 38 Page 109/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectclass
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ifamily
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/iobjectinstance

The IObjectInstance interface represents an instance in Construct.

GetProject()
Return the IProject representing the instance's associated project.

GetObjectType()
Return the associated IObjectType interface for this instance.

GetUID()
Return the UID (unique ID) the editor has assigned to this instance.

GetPropertyValue(id)
Get the value of a plugin property for this instance by its property ID. Color
properties return a SDK.Color.

SetPropertyValue(id, value)
Set the value of a plugin property for this instance by its property ID. For color
properties a SDK.Color must be passed as the value.

GetExternalSdkInstance()
Return the custom plugin-specific SDK editor instance class for this object
instance, which will be a derivative of IInstanceBase. For example if called for
an instance of the addon SDK's drawingPlugin sample, this would return the
MyDrawingInstance class. This method can only be used for installed

addons - it will return null for any built-in plugins.

Be careful if taking a dependency on a class provided by another
developer. Make sure to only use documented and supported methods. If
you use features which are changed or removed by a future addon
update, then your addon may crash the editor. Scirra will not provide
support for crashes involving third-party addons and we will direct
affected users to contact the addon developer.

Revision 38 Page 110/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/base-classes/iinstancebase

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/iobjecttype

The IObjectType interface represents an object type in Construct. It derives
from IObjectClass.

GetImage()
Return an IAnimationFrame representing the object type's image. The plugin
must have specified SetHasImage(true) in IPluginInfo.

EditImage()
Open the Animations Editor in Construct to edit the object's image. The plugin
must have specified SetHasImage(true) .

GetAnimations()
Return an array of IAnimation representing the animations in the object type.
Note this is only applicable to animated plugin types, e.g. Sprite.

AddAnimation(animName, frameBlob, frameWidth, frameHeight)
Add a new animation to the object type. The object type's plugin must be
animated (e.g. the Sprite plugin). Animations must have at least one frame, so
this method also adds an animation frame. The frameBlob, frameWidth and
frameHeight parameters are all optional: if they are omitted, Construct will add
a default empty animation frame. If they are provided they are interpreted the
same way as IAnimation.AddFrame(); see the linked documentation for more
details. The call returns a promise that resolves with the newly created
IAnimation.

GetAllInstances()
Return an array of all IObjectInstances or IWorldInstances of this object type in
the project.

The returned instances may be placed on different layouts.

CreateWorldInstance(layer)
Create a new instance from this object type, and add it to the given ILayer.
Returns a new IWorldInstance interface representing the new instance. Note

Revision 38 Page 111/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectclass
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimationframe
https://www.construct.net/make-games/manuals/addon-sdk/reference/iplugininfo
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimation
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimation
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/ianimation
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ilayer
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance

this method is only applicable to "world" type plugins.

IsInContainer()
Return a boolean indicating if the object type belongs to a container.

GetContainer()
Return the IContainer the object type belongs to if any, else null .

CreateContainer(initialObjectTypes)
Create a new container using an array of IObjectType for the members of the
container. The array must include the IObjectType this call is made on, must
contain at least two elements, and the object type must not already be in a
container. Returns an IContainer representing the created container.

Revision 38 Page 112/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/icontainer
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/icontainer

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/object-interfaces/iworldinstance

The IWorldInstance interface represents an instance of a "world" type
plugin in Construct. It derives from IObjectInstance.

GetLayer()
Return the ILayer this instance belongs to.

GetLayout()
Return the ILayout this instance belongs to.

GetBoundingBox()
Returns an SDK.Rect representing the bounding box of the instance in the
layout.

GetQuad()
Returns an SDK.Quad representing the bounding quad of the instance in the
layout.

GetColor()
Returns an SDK.Color representing the premultiplied color of the instance. This
combines the instance's color tint with its opacity in the alpha channel.

SetOpacity(o)
GetOpacity()

Set or get the alpha component of the instance's color, representing its opacity,
in the 0-1 range.

SetX(x)
SetY(y)
SetXY(x, y)
GetX()
GetY()

Set and get the position of this instance in layout co-ordinates.

Revision 38 Page 113/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjectinstance
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayer
https://www.construct.net/en/make-games/manuals/addon-sdk/reference/model-interfaces/ilayout
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color

SetZElevation(z)
GetZElevation()

Set and get the Z elevation (position on Z axis) of this instance. Note this is
relative to the Z elevation of the layer the instance is on.

GetTotalZElevation()
Get the total Z elevation of this instance, which is its own Z elevation added to
the Z elevation of the layer it is on.

SetAngle(a)
GetAngle()

Set and get the angle of the instance, in radians.

SetWidth(w)
SetHeight(h)
SetSize(w, h)
GetWidth()
GetHeight()

Set and get the size of the instance, in pixels.

SetOriginX(x)
SetOriginY(y)
SetOrigin(x, y)
GetOriginX()
GetOriginY()

Set and get the current origin of the instance in the layout. Note this is
normalized to a [0, 1] range, e.g. 0.5 is the middle.

ApplyBlendMode(iRenderer)
Sets the current blend mode of the given IWebGLRenderer according to the
Blend mode property of the instance in Construct. This is only relevant if the
plugin specifies that it supports effects. Use this in the Draw() method to set
the correct blend mode.

Revision 38 Page 114/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/ui-
interfaces/ilayoutview

The ILayoutView interface provides access to a Layout View from the SDK.
Note that this interface represents the editor view; the ILayout interface provides
the interface to the actual layout in the project model.

GetProject()
Return the IProject representing the project associated with this Layout View.

GetLayout()
Return an ILayout representing the layout in the project model that this Layout
View is showing.

GetActiveLayer()
Return an ILayer representing the current active layer selected in this Layout
View.

GetZoomFactor()
Return the current zoom factor of the Layout View. For example 1 represents
100% zoom, 0.5 represents 50% zoom, etc.

LayoutToClientDeviceX(x)
LayoutToClientDeviceY(y)

Convert from layout co-ordinates to device pixel co-ordinates in the layout view
canvas. This is useful for rendering at device pixel sizes after calling
SetDeviceTransform() .

SetDeviceTransform(iRenderer)
Set the given IWebGLRenderer to a device pixel co-ordinate transform. This
means co-ordinates used for rendering are based on device pixel co-ordinates
relative to the layout view canvas, rather than layout co-ordinates.

SetDefaultTransform(iRenderer)
Set the given IWebGLRenderer to a layout co-ordinate transform. This is the
default and should be restored after using SetDeviceTransform() .

Revision 38 Page 115/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/ui-interfaces/ilayoutview
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ilayout
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ilayout
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/ilayer
https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer

Refresh()
Schedules the layout view to be redrawn at the next animation frame. Avoid
unnecessarily refreshing the layout view, such as refreshing on a timer, since
this can waste battery life.

Revision 38 Page 116/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/reference/ui-
interfaces/utilities

The SDK.UI.Util interface provides access to various user interface utilities
in the SDK.

AddDragDropFileHandler(callback, opts)
Register a callback for handling files drag-and-dropped in to the Construct 3
window. This is part of the Custom Importer API, allowing addons to handle
importing files in a custom format. The given callback is invoked when a file is
dropped in to the Construct 3 window, providing nothing else has handled it
first. The callback must return a promise that resolves with true if the drop
was recognised and imported, otherwise false if the drop was not
recognised as a supported format (in which case Construct will continue
running other handlers).
The opts parameter of AddDragDropFileHandler() is an options
object, which may specify the following:

isZipFormat : boolean indicating to handle dropped zip files only. If
true , the callback will only be run if Construct recognises the dropped file

as a zip file. Consequently the file parameter of the callback will be an
IZipFile, from which the contents of the zip file can be read. If false , the
callback will only be run if Construct does not recognise the dropped file as a
zip file, and consequently the file parameter of the callback will be a
Blob .

toLayoutView : boolean indicating to handle files dropped to an open
Layout View only. If true , the callback will only be run if a Layout View is
open, and the opts parameter of the callback will contain information
about the Layout View and the drop position. If false , the callback will be
run regardless of whether a Layout View is open or not, and no further
options will be provided to the callback.

The callback should have the signature async
Revision 38 Page 117/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/ui-interfaces/utilities
https://www.construct.net/make-games/manuals/addon-sdk/reference/misc-interfaces/izipfile

function(filename, file, opts) . The type of the file parameter
is an IZipFile or Blob depending on the isZipFormat option. The opts
parameter of the callback will provide the following additional details only when
the toLayoutView option was specified:

layoutView : an ILayoutView interface representing the Layout View that
was open when the file was dropped. This also provides access to the
associated project, layout, current active layer, and so on.

clientX and clientY : the drop position within the window in client
co-ordinates.

layoutX and layoutY : the drop position within the Layout View in
layout co-ordinates. This is the position to create any new instances relevant
to.

static ShowLongTextPropertyDialog(text, caption)
Show the same dialog used to edit longtext properties. This is simply a
large multi-line text field in a dialog, allowing for long text strings to be more
conveniently edited, since the Properties Bar often can only show a small
amount of text. Returns a promise that resolves with null if the dialog was
cancelled, else a string of the text in the dialog.

Revision 38 Page 118/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/ui-interfaces/ilayoutview

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/finding-addon-ids

Some APIs use special IDs, such as a plugin ID or action ID. The editor provides
some methods you can use from the browser console to explore which IDs are
available.

The C3SDK_ListAddonIDs(addonType) method lists all installed addon IDs
in the editor. The addonType parameter must be "plugin" or
"behavior" . For example, load Construct 3 in a browser, open the browser

console (usually F12), and enter the following call to list all plugin IDs:

C3SDK_ListAddonIDs("plugin")

This may take a moment to load, but then it will log to the console the ID for every
installed plugin, along with its name as used in the editor (since this is sometimes
different to the ID for legacy reasons).

The C3SDK_ListACEIDs(addonType, addonId, aceType) method lists
the IDs for an addon's actions, conditions or expressions (ACEs). The parameters
it takes are:

addonType: as before, either "plugin" or "behavior" .

addonId: the ID of the addon, which can be found using
C3SDK_ListAddonIDs() .

aceType: one of "actions" , "conditions" or "expressions" ,
determining which to list.

For example the following call will list all of the Sprite plugin's action IDs. The
parameters each takes are also listed.

C3SDK_ListACEIDs("plugin", "Sprite", "actions")

Revision 38 Page 119/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/finding-addon-ids

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/ibehaviorinfo

IBehaviorInfo defines the configuration for a behavior. It is typically accessed in
the behavior constructor via this._info .

SetName(name)
Set the name of the addon. Typically this is read from the language file.

SetDescription(description)
Set the description of the addon. Typically this is read from the language file.

SetVersion(version)
Set the version string of the addon, in A.B.C.D form. Typically this is set to the
BEHAVIOR_VERSION constant.

SetCategory(category)
Set the category of the addon. Typically this is set to the
BEHAVIOR_CATEGORY constant. It must be one of "attributes" ,
"general" , "movements" , "other" .

SetAuthor(author)
Set a string identifying the author of the addon.

SetHelpUrl(url)
Set a string specifying a URL where the user can view help and documentation
resources for the addon.

SetIcon(url, type)
Set the addon icon URL and type. By default the URL is "icon.svg" and
the type is "image/svg+xml" . It is recommended to leave this at the
default and use an SVG icon, since it will scale well to any display size or
density. However you can change your addon to load a PNG icon with
SetIcon("icon.png", "image/png") .

Revision 38 Page 120/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/ibehaviorinfo

SetIsOnlyOneAllowed(isOnlyOneAllowed)
Set a boolean of whether the behavior is allowed to be added more than once to
the same object. The default is false , which means the behavior can be
added multiple times to the same object. Set to true to only allow it to be
added once to each object.

SetIsDeprecated(isDeprecated)
Set a boolean of whether the addon is deprecated or not. If you wish to replace
your addon with another one, the old one can be deprecated with
SetIsDeprecated(true) . This makes it invisible in the editor so it cannot

be used in new projects; however old projects with the addon already added
can continue to load and work as they did before. This discourages use of the
deprecated addon without breaking existing projects that use it.

SetCanBeBundled(canBeBundled)
Pass false to prevent the addon from being bundled via the Bundle
addons project property. By default all addons may be bundled with a project,
and it is recommended to leave this enabled for best user convenience.
However if you publish a commercial addon and want to prevent it being
distributed by project-bundling, you may wish to disable this.

SetProperties(propertiesArray)
Set the available addon properties by passing an array of PluginProperty. See
Configuring Behaviors for more information.

AddCordovaPluginReference(opts)
Add a dependency on a Cordova plugin, that will be included when using the
Cordova exporter. For more information see Specifying dependencies.

AddFileDependency(opts)
Add a dependency on another file included in the addon. For more information
see Specifying dependencies.

AddRemoteScriptDependency(url) Not recommended
Add a script dependency to a remote URL (on a different origin). For more
information see Specifying dependencies.

SetScriptInterfaceNames(opts)
Use this method to tell Construct the names of your script interface classes.
This is necessary to generate the correct TypeScript definition files. opts is
an object which allows specifying the names for the instance ,
behaviorType and behavior interface names as necessary, e.g.:

Revision 38 Page 121/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/pluginproperty
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-behaviors
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies

this._info.SetScriptInterfaceNames({

 instance: "IBulletBehaviorInstance"

});

SetTypeScriptDefinitionFiles(arr)
Specify an array of TypeScript definition files (.d.ts) your addon provides. This
should be used to provide full TypeScript definitions of any script interfaces
your addon provides, which is necessary for projects using TypeScript with
your addon. Example:

this._info.SetTypeScriptDefinitionFiles(["c3runtime/IBulletBehavi
orInstance.d.ts"]);

Revision 38 Page 122/200

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/iplugininfo

IPluginInfo defines the configuration for a plugin. It is typically accessed in the
plugin constructor via this._info .

SetName(name)
Set the name of the addon. Typically this is read from the language file.

SetDescription(description)
Set the description of the addon. Typically this is read from the language file.

SetVersion(version)
Set the version string of the addon, in A.B.C.D form. Typically this is set to the
PLUGIN_VERSION constant.

SetCategory(category)
Set the category of the addon. Typically this is set to the
PLUGIN_CATEGORY constant. It must be one of "data-and-storage" ,
"form-controls" , "general" , "input" , "media" ,
"monetisation" , "platform-specific" , "web" , "other" .

SetAuthor(author)
Set a string identifying the author of the addon.

SetHelpUrl(url)
Set a string specifying a URL where the user can view help and documentation
resources for the addon. The website should be hosted with HTTPS.

SetPluginType(type)
Set the plugin type. This can be "object" or "world" . The world typeh
represents a plugin that appears in the Layout View, whereas the object type
represents a hidden plugin, similar to the Audio plugin (a single-global type) or
Dictionary. World type plugins must derive from
SDK.IWorldInstanceBase instead of SDK.IInstanceBase and

implement a Draw() method.

Revision 38 Page 123/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/iplugininfo

SetIcon(url, type)
Set the addon icon URL and type. By default the URL is "icon.svg" and
the type is "image/svg+xml" . It is recommended to leave this at the
default and use an SVG icon, since it will scale well to any display size or
density. However you can change your addon to load a PNG icon with
SetIcon("icon.png", "image/png") .

SetIsResizable(isResizable)
For "world" type plugins only. Pass true to enable resizing instances in
the Layout View.

SetIsRotatable(isRotatable)
For "world" type plugins only. Pass true to enable the Angle property
and rotating instances in the Layout View.

SetIs3D(is3d)
For "world" type plugins only. Pass true to specify that this plugin
renders in 3D. This will cause the presence of the plugin in a project to enable
3D rendering when the project Rendering mode property is set to Auto (which
is the default setting).

SetHasImage(hasImage)
For "world" type plugins only. Pass true to add a single editable image,
such as used by the Tiled Background plugin.

SetDefaultImageURL(url)
For plugins that use a single editable image only. Set the URL to an image file
in your addon to use as the default image when the object is added to a project,
e.g. "default.png" .

When using developer mode addons, remember to add the image file to
the file list in addon.json.

SetIsTiled(isTiled)
For "world" type plugins only. Pass true to indicate that the image is
intended to be tiled. This adjusts the texture wrapping mode when Construct
creates a texture for its image.

SetIsDeprecated(isDeprecated)
Set a boolean of whether the addon is deprecated or not. If you wish to replace
your addon with another one, the old one can be deprecated with

Revision 38 Page 124/200

SetIsDeprecated(true) . This makes it invisible in the editor so it cannot
be used in new projects; however old projects with the addon already added
can continue to load and work as they did before. This discourages use of the
deprecated addon without breaking existing projects that use it.

SetIsSingleGlobal(isSingleGlobal)
Pass true to set the plugin to be a single-global type. The plugin type must
be "object" . Single-global plugins can only be added once to a project,
and they then have a single permanent global instance available throughout the
project. This is the mode that plugins like Touch and Audio use.

SetSupportsZElevation(supportsZElevation)
Pass true to allow using Z elevation with this plugin. The plugin type must
be "world" . By default the renderer applies the Z elevation before calling
the Draw() method on an instance, which in many cases is sufficient to
handle rendering Z elevation correctly, but be sure to take in to account Z
elevation in the drawing method if it does more complex rendering.

AddCommonZOrderACEs() will add common ACEs for Z elevation if
supported.

SetSupportsColor(supportsColor)
Pass true to allow using the built-in color property to tint the object
appearance. The plugin type must be "world" . By default the renderer sets
the color before calling the Draw() method on an instance, which in many
cases is sufficient to handle rendering with the applied color, but be sure to take
in to account the instance color in the drawing method if it does more complex
rendering.

AddCommonAppearanceACEs() will add common ACEs for color if
supported.

SetSupportsEffects(supportsEffects)
Pass true to allow using effects, including the Blend mode property, with
this plugin. The plugin type must be "world" . If the plugin does not simply
draw a texture the size of the object (as Sprite does), you should also call
SetMustPreDraw(true) .

SetMustPreDraw(mustPreDraw)
Pass true to disable an optimisation in the effects engine for objects that
simply draw a texture the size of the object (e.g. Sprite). This is necessary for

Revision 38 Page 125/200

effects to render correctly if the plugin draws anything other than the equivalent
the Sprite plugin would.

SetCanBeBundled(canBeBundled)
Pass false to prevent the addon from being bundled via the Bundle
addons project property. By default all addons may be bundled with a project,
and it is recommended to leave this enabled for best user convenience.
However if you publish a commercial addon and want to prevent it being
distributed by project-bundling, you may wish to disable this.

AddCommonPositionACEs()
AddCommonSceneGraphACEs()
AddCommonSizeACEs()
AddCommonAngleACEs()
AddCommonAppearanceACEs()
AddCommonZOrderACEs()

Add common built-in sets of actions, conditions and expressions (ACEs) to the
plugin relating to various built-in features.

Note: if adding common scene graph ACEs, your plugin must be
prepared to handle being added in to a scene-graph hierarchy, and
having its position, size and angle controlled automatically. It must also
support all the properties modifiable by hierarchies, otherwise the scene
graph feature may not work as expected.

SetProperties(propertiesArray)
Set the available addon properties by passing an array of PluginProperty. See
Configuring Plugins for more information.

AddCordovaPluginReference(opts)
Add a dependency on a Cordova plugin, that will be included when using the
Cordova exporter. For more information see Specifying dependencies.

AddCordovaResourceFile(opts)
Add a resource file to be included with Cordova exports. For more information
see Specifying dependencies.

AddFileDependency(opts)
Add a dependency on another file included in the addon. For more information
see Specifying dependencies.

AddRemoteScriptDependency(url) Not recommended

Revision 38 Page 126/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/pluginproperty
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies

Add a script dependency to a remote URL (on a different origin). For more
information see Specifying dependencies.

SetGooglePlayServicesEnabled(enabled)
Pass true to enable Google Play Services in Cordova Android exports.
<preference name="GradlePluginGoogleServicesEnabled"

value="true" /> will be added in config.xml.

Since this can only be configured once, if any plugin in the project
specifies to enable Google Play Services, it will be enabled for the entire
project.

SetDOMSideScripts(arr)
Specify an array of script paths to load in the main document context rather
than the runtime context. For more information see the section DOM calls in
the C3 runtime in Runtime scripts.

SetScriptInterfaceNames(opts)
Use this method to tell Construct the names of your script interface classes.
This is necessary to generate the correct TypeScript definition files. opts is
an object which allows specifying the names for the instance ,
objectType and plugin interface names as necessary, e.g.:

this._info.SetScriptInterfaceNames({

 instance: "ISpriteInstance"

});

SetTypeScriptDefinitionFiles(arr)
Specify an array of TypeScript definition files (.d.ts) your addon provides. This
should be used to provide full TypeScript definitions of any script interfaces
your addon provides, which is necessary for projects using TypeScript with
your addon. Example:

this._info.SetTypeScriptDefinitionFiles(["c3runtime/ISpriteInstan
ce.d.ts"]);

Revision 38 Page 127/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/guide/runtime-scripts

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/pluginproperty

PluginProperty defines a single property for an addon that will appear in the
Properties Bar. Typically an array of PluginProperty is passed to
this._info.SetProperties() . See Configuring Plugins for more

information. Note that despite the name, PluginProperty is also used to define
properties for behaviors.

Note properties do not directly define any strings that appear in the editor UI.
These are defined in The Language File.

new SDK.PluginProperty(type, id, initialValue_or_options)

type
The type of the property. This can be one of:

"integer" — an integer number property, always rounded to a whole
number.

"float" — a floating-point number property.

"percent" — a floating-point number in the range [0-1] represented as a
percentage. For example if the user enters 50%, the property will be set to a
value of 0.5.

"text" — a field the user can enter a string in to.

"longtext" — the same as "text" , but a button with an ellipsis
("...") appears on the right side of the field. The user can click this button to
open a dialog to edit a long string more conveniently. This is useful for
potentially long content like the project description, or the main text of the
Text object.

Revision 38 Page 128/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/pluginproperty
https://www.construct.net/make-games/manuals/addon-sdk/guide/configuring-plugins
https://www.construct.net/make-games/manuals/addon-sdk/guide/language-file

"check" — a checkbox property, returning a boolean.

"font" — a field which displays the name of a font and provides a button
to open a font picker dialog. The property is set to a string of the name of the
font.

"combo" — a dropdown list property. The property is set to the zero-
based index of the chosen item. The items field of the options object
must be used to specify the available items.

"color" For plugins only — a color picker property. The initial value
must be an array, e.g. [1, 0, 0] for red.

"object" For plugins only — an object picker property allowing the user
to pick an object class. Note: At runtime, this passes a SID (Serialization ID)
for the chosen object class, or -1 if none was picked. Use the runtime
method GetObjectClassBySID to look up the corresponding ObjectClass.

"group" — creates a new group in the Properties Bar. There is no value
associated with this property.

"link" For plugins only — creates a clickable link in the Properties Bar.
There is no value associated with this property. A linkCallback
function must be specified in the options object.

"info" — creates a read-only string that cannot be edited. There is no
value associated with this property. A infoCallback function must be
specified in the options object.

id
A string of the ID for the property. This is used in the language file to identify
related strings.

initialValue_or_options
For many properties, the only extra information needed is the initial value. For
example for a "float" parameter this parameter can be a number of the

Revision 38 Page 129/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/runtime

initial value to use for the property. However to configure more options for the
property, pass an object instead, and see the section on using an options
object below. Some property types require the use of an options object, e.g.
"combo" requires it to specify the item list.

If the third parameter of the constructor is an object, use the following properties to
specify further configuration of the property.

initialValue
Specify the initial value for the property, since the third parameter is occupied
by the options object. Note when using a "combo" type this must be a string
of the initial item ID, and when using a "color" type, this must be a
normalized RGB array, e.g. [1, 0, 0] for red.

minValue
Specify a minimum value for a numeric property.

maxValue
Specify a maximum value for a numeric property.

items
Only valid with the "combo" property type. Specify an array of strings
representing the available item IDs in the dropdown list. The actual displayed
strings are read from the language file.

dragSpeedMultiplier
Only valid with numeric properties. Pass a ratio to modify how quickly the value
changes when it is being dragged up or down. For example passing 2 would
cause the value to increase twice as fast as the mouse moves while dragging
the value.

allowedPluginIds
For "object" type properties only. An array of plugin ID strings to filter the
object picker by. This can also contain the special string "<world>" to allow
any world-type plugin.

linkCallback
For "link" type properties only. A function that is called when the link is
clicked. The number of calls, and the type of the parameter, are determined by
the callbackType option.

Revision 38 Page 130/200

callbackType
For "link" type properties only. Specifies how the link callback function is
used. This can be one of the following:

"for-each-instance" default — the callback is run once per selected
instance in the Layout View. The callback parameter is an IWorldInstance.
This is useful for per-instance modifications, such as a link to make all
instances their original size.

"once-for-type" — the callback is run once regardless of how many
instances are selected in the Layout View. The callback parameter is an
IObjectType. This is useful for per-type modifications, such as a link to edit
the object image.

infoCallback
For "info" type properties only. A function that is called to get the value to
display as a read-only string. The function is automatically called when any
other properties change. The parameter is an instance of your addon, which
you can use to read other property values and use them in the returned value.

interpolatable
For "integer" , "float" , "percent" , "text" , "longtext" ,
"check" , "combo" and "color" type properties only. Has a default

value of false , set to true so the property can be supported by
timelines. In order to fully support timelines it is also needed to follow the
Timeline Integration Guide.

Revision 38 Page 131/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iworldinstance
https://www.construct.net/make-games/manuals/addon-sdk/reference/object-interfaces/iobjecttype
https://www.construct.net/en/make-games/manuals/addon-sdk/guide/timeline-integration

View online: https://www.construct.net/en/make-games/manuals/addon-
sdk/reference/specifying-dependencies

Plugins and behaviors can specify dependencies on additional files, or Cordova
plugins for inclusion with the Cordova exporter. Dependencies are added using
the AddFileDependency(opts) and
AddCordovaPluginReference(opts) methods on both IPluginInfo and

IBehaviorInfo. Remote scripts can also be added with
AddRemoteScriptDependency , but this is not recommended.

A file dependency refers to another file in the addon. Note the file must be
bundled with the addon; you cannot refer to URLs elsewhere on the Internet.
There are several kinds of file dependency, which correspond to the type
property in the options object:

copy-to-output
This simply causes the file to be copied to the output folder when exporting.
The file is also available in preview mode. This is useful for bundling additional
resources, such as an image file that needs to be loaded at runtime, or a script
that is dynamically loaded.

inline-script
A script dependency that is directly included in the output script file (normally
named c3runtime.js).
Consequently this script will also be minified on export along with the addon
runtime script. This is a convenient way to break up a large runtime script.

external-dom-script
A script dependency that is included via the addition of an extra <script>
tag in the exported HTML file. Note in worker mode the script is loaded in the
DOM, so is not directly available to the runtime code in the worker. The script is
not minified on export. This is suitable for large external libraries that the addon
references.

For backwards-compatibility reasons, the type external-script is
treated as external-dom-script .

Revision 38 Page 132/200

https://www.construct.net/en/make-games/manuals/addon-sdk/reference/specifying-dependencies
https://www.construct.net/make-games/manuals/addon-sdk/reference/iplugininfo
https://www.construct.net/make-games/manuals/addon-sdk/reference/ibehaviorinfo

external-runtime-script
A script dependency that is included via the addition of an extra <script>
tag in the exported HTML file, or loaded on the worker with
importScripts() in worker mode. This means the script is always directly

available to runtime code. However the dependency must be designed to work
in a Web Worker, e.g. not assuming the DOM is present. The script is not
minified on export.

external-css
A stylesheet dependency that is included via the addition of an extra <link
rel="stylesheet"> tag in the exported HTML file, in case the addon needs
to specify CSS styles.

wrapper-extension
A DLL to be bundled for a wrapper extension. See Wrapper extensions for
more details.

To add a file dependency, call AddFileDependency with an options object,
such as in this example:

this._info.AddFileDependency({
 filename: "mydependency.js",
 type: "external-script"
});

The options object uses the following properties.

filename
Name of the dependency file in the addon. This must be bundled with the
addon; it cannot refer to a URL. It is recommended to bundle the script with
your addon, but if you must use a URL, see the section Remote script
dependencies. The file path is relative to the root (the location of addon.json).

For developer mode addons, make sure the dependency file is also
included in the "file-list" key. For more information see the
section on Developer mode addons in Addon metadata.

type
One of the types described above, e.g. "external-script" .

fileType
Revision 38 Page 133/200

https://www.construct.net/en/make-games/manuals/addon-sdk/guide/wrapper-extensions
https://www.construct.net/make-games/manuals/addon-sdk/guide/addon-metadata

When type is "copy-to-output" , this must specify the MIME type of
the file. For example if including "image.png" as a "copy-to-
output" dependency, the fileType
must be set to "image/png" .

platform
When type is "wrapper-extension" , this specifies the platform
architecture of the DLL. The supported options are "windows-x86" (for 32-
bit Windows), "windows-x64" , "windows-arm64" , and "xbox-
uwp-x64" (for Xbox UWP export option only).

Addons can specify dependencies on Cordova plugins. These only apply to the
Cordova exporter, which covers both Android and iOS. When exporting a Cordova
project, the additional Cordova plugin dependencies are automatically included in
the exported config.xml. This allows convenient integration of a Construct addon
with a Cordova plugin.

To add a Cordova plugin dependency, call AddCordovaPluginReference
with an options object, such as in this example:

this._info.AddCordovaPluginReference({
 id: "cordova-plugin-inappbrowser"
});

If you wish to provide variables to the Cordova plugin, use the variables
property of the options object to pass an array of [variableName,
pluginProperty] pairs. In this case the plugin must also be passed in the
plugin property. An example is shown below.

const property = new SDK.PluginProperty("integer", "test-property",
 0);

this._info.SetProperties([
 property
]);

this._info.AddCordovaPluginReference({
 id: "cordova-plugin-inappbrowser",
 plugin: this,
 variables: [
 ["MY_VAR", property]

Revision 38 Page 134/200

]
});

Cordova plugins that require variables will not compile if the variable is
omitted from config.xml.

See Cordova plugin variables for more information.

The options object uses the following properties.

id
The ID of the Cordova plugin to reference.

version Optional
A version spec for the Cordova plugin, e.g. "1.0.4" . If this is not specified,
the latest version will be used.

platform Optional
Specify a specific platform the Cordova plugin applies to. By default this is
"all" meaning it will be used in both Android and iOS exports. However it

can be set to "android" or "ios" to only be included when exporting to
a specific platform. This is useful to switch between different Cordova plugins
on different platforms.

variables Optional
Specify variables to be used with the Cordova plugin as an array of
[variableName, pluginProperty] pairs. The variable name is bound

to a SDK.PluginProperty . When the project is exported a variable is
added under the plugin reference in config.xml with the given name and a value
taken from the specified property. When variables are specified, the plugin
property must also be set.

plugin Optional
Used to specify the plugin when using variables. Normally this should be set to
this .

Note for security reasons the Construct mobile app build service does not allow
arbitrary Cordova plugins to be used. The build service uses an allowlist of
allowed Cordova plugins. If you'd like a Cordova plugin to be added to the allowlist,
please file an issue on the Construct issue tracker. Please note we cannot
guarantee that Cordova plugins will be allowed, and approval is subject to a
security review. Other build systems, including compiling with the Cordova CLI, do
not impose this restriction.

Revision 38 Page 135/200

https://www.construct.net/out?u=https%3a%2f%2fcordova.apache.org%2fdocs%2fen%2flatest%2fconfig_ref%2findex.html%23variable
https://www.construct.net/out?u=https%3a%2f%2fgithub.com%2fScirra%2fConstruct-3-bugs%2fissues

Addons can further specify dependencies on additional resource files for Cordova
exports. When exporting a Cordova project, the additional Cordova resource file
dependencies are automatically included in the exported config.xml as
<resource file src="..." target="..."> tags.

To add a Cordova resource file dependency, call AddCordovaResourceFile
with an options object, such as in this example:

this._info.AddCordovaResourceFile({
 src: "myfile.txt"
});

This will insert <resource-file src="myfile.txt"> to the exported
config.xml.

More information about how resource files are used in Cordova can be found in
the Cordova documentation.

The options object uses the following properties.

src
The src attribute of the resource-file tag. Location of the file relative
to config.xml.

target Optional
The target attribute of the resource-file tag. Path to where the file
will be copied.

platform Optional
Specify a specific platform the Cordova plugin applies to. By default this is
"all" meaning it will be used in both Android and iOS exports. However it

can be set to "android" or "ios" to only be included when exporting to
a specific platform.

Plugins and behaviors may also specify remote script dependencies. These are
loaded from a cross-origin URL, e.g. https://example.com/api.js .

Avoid using remote script dependencies where possible. They have some
drawbacks:

Revision 38 Page 136/200

https://www.construct.net/out?u=https%3a%2f%2fcordova.apache.org%2fdocs%2fen%2flatest%2f

Construct 3 games work offline. However remote scripts cannot be
cached for offline use, so will fail to load when the user is offline.

Remote scripts can also fail to load due to unreliable connections or
service outages.

In some native apps, e.g. Cordova on Android/iOS, the native platform
may block any access to URLs that are not on an allowlist of allowed
origins. This can cause the script to fail to load unless the user does
additional configuration of their app.

Prefer using a file dependency instead, and bundle the script with your
addon. If you must use a remote script, ensure your addon gracefully
handles the case the remote script fails to load.

Use AddRemoteScriptDependency to add a remote URL to load a script
from, e.g.:

this._info.AddRemoteScriptDependency("https://example.com/api.js");

This will produce the following tag on export, loaded before the runtime:

<script src="https://example.com/api.js"></script>

The script URL must not use http: in its URL. On the modern web this
will often be blocked from secure sites as mixed content. You must either
use secure HTTPS, or a same-protocol URL like
//example.com/api.js .

Revision 38 Page 137/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/array

The built-in Array plugin SDK instance exposes the following APIs.

At(x, y, z)
Retrieve an element from the array at the given X, Y and Z co-ordinates. For
one or two dimensional access, pass 0 for the unused components.

Set(x, y, z, val)
Set an element in the array at the given X, Y and Z co-ordinates. For one or two
dimensional access, pass 0 for the unused components.

Only store number or string primitives in the array, or the plugin will
cease to work correctly.

SetSize(w, h, d)
Set the size of the array in up to three dimensions. For one or two dimensional
arrays, pass 1 for the unused dimensions. (Note passing 0 for any dimension
will create an array with zero elements that cannot store any data.) If the array
grows, new elements have the value 0. If the array shrinks, elements are
removed.

GetWidth()
GetHeight()
GetDepth()

Retrieve the current dimensions of the array.

Revision 38 Page 138/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/array

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/binary-data

The built-in Array plugin SDK instance exposes the following APIs.

You can filter object parameters by the Binary Data's plugin ID
"BinaryData" to ensure the user can only pick Binary Data objects for

any conditions or actions that integrate with it.

SetArrayBufferCopy(viewOrBuffer)
Set the contents of the Binary Data object by copying viewOrBuffer ,
which can be either an ArrayBuffer or a typed array.

SetArrayBufferTransfer(arrayBuffer)
Set the contents of the Binary Object by taking ownership of the passed
ArrayBuffer. This avoids copying the data, but the caller must not use the
passed ArrayBuffer any more.

GetArrayBufferCopy()
Return an ArrayBuffer which is a copy of the contents of the Binary Data
object. Since a copy is returned the caller may modify the returned ArrayBuffer.

GetArrayBufferReadOnly()
Return a direct reference to the ArrayBuffer representing the contents of the
Binary Data object. This must not be modified by the caller. However this
avoids copying the data if used for read-only purposes, e.g. sending down a
WebSocket.

Revision 38 Page 139/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/binary-data

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/dictionary

The built-in Dictionary plugin SDK instance exposes the following APIs.

GetDataMap()
Return the Map which is used as the underlying data storage for the Dictionary
object. This allows access to add, change, remove and iterate items.

Only use string keys, and only store number or string primitives as key
values, or the plugin will cease to work correctly.

Revision 38 Page 140/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/dictionary
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fJavaScript%2fReference%2fGlobal_Objects%2fMap

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/drawing-canvas

The built-in Drawing canvas plugin exposes the following APIs.

async GetImagePixelData()
Takes a snapshot of the drawing canvas pixel state on the GPU, and reads it
back to the CPU asynchronously. Resolves with an ImageData representing
the pixel data. Note this uses unpremultiplied alpha, whereas the surface on the
GPU is premultiplied, so technically this is lossy.

Revision 38 Page 141/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/drawing-canvas
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fImageData

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/facebook

The built-in Facebook plugin SDK instance exposes the following APIs.

When a project uses the Facebook plugin, the ObjectClass for it can be
looked up using the runtime method
GetSingleGlobalObjectClassByCtor(C3.Plugins.Facebook) . From

there the single-global instance can be obtained and then the SDK instance,
which exposes the API below. Note that if the Facebook plugin is not present in
the project then GetSingleGlobalObjectClassByCtor() will return
null . The code sample below demonstrates how to access the Facebook

plugin instance from another addon.

const facebookObjectClass = this._runtime.GetSingleGlobalObjectClas
sByCtor(C3.Plugins.Facebook);
if (facebookObjectClass)
{
 const facebookSdkInst = facebookObjectClass.GetSingleGlobalInstanc
e().GetSdkInstance();
 // can now make calls, e.g.: facebookSdkInst.GetAccessToken()
}

GetAccessToken()
Return a string of the Facebook login access token. This is available once the
On user logged in trigger fires. The access token can be used to make
additional Facebook API calls on behalf of the user.

Revision 38 Page 142/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/facebook

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/function

When the Function plugin is present in a project, it creates a global function that
can be used to invoke a function from JavaScript. Note this function does not
exist if the Function plugin is not present in the project, so calling code should
check for the existence of the method first. An example is included below.

if (self.c2_callFunction)
 self.c2_callFunction("name", ["param1", "param2"]);

self.c2_callFunction(name, params)

In the C3 runtime, the name c3_callFunction can also be used.

Synchronously trigger the function with the given name in the event system.
params is optional and can be omitted if no parameters are to be passed;
otherwise it must be an array of the parameters to pass. Parameters may only
be string or number primitives - any other types will return as 0 in Construct. If
the function in the event system returns a value, it is also returned by this
method, and also can only return a string or number primitive.

Do not use this method with the scripting feature in Construct. It is
intended only for the Addon SDK. When writing JavaScript code in the
Construct editor, use runtime.callFunction() instead.

Revision 38 Page 143/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/function
https://www.construct.net/en/make-games/manuals/construct-3/scripting/scripting-reference/iruntime

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/addon-interfaces/tilemap

The built-in Tilemap plugin exposes the following APIs allowing manipulation of
the tiles in the tilemap.

Tiles in the tilemap are represented as a single 32-bit integer number and can be
rotated and flipped. To support this they consist of two parts using a bitmask:

The tile ID in the lower 29 bits - this is the number of the tile as shown in the
Tilemap Bar when hovering the tile

Tile flags in the upper 3 bits

There is also a special tile number -1 indicating an empty tile.

The Tilemap plugin exposes the following flags and masks which can be used to
manipulate tile numbers:

C3.Plugins.Tilemap.TILE_FLIPPED_HORIZONTAL = -0x80000000;
C3.Plugins.Tilemap.TILE_FLIPPED_VERTICAL = 0x40000000;
C3.Plugins.Tilemap.TILE_FLIPPED_DIAGONAL = 0x20000000;
C3.Plugins.Tilemap.TILE_FLAGS_MASK = 0xE0000000;
C3.Plugins.Tilemap.TILE_ID_MASK = 0x1FFFFFFF;

For example, to flip tile ID 2 horizontally, you would use bitwise OR combining the
tile ID and the flag, e.g. 2 |
C3.Plugins.Tilemap.TILE_FLIPPED_HORIZONTAL . Similarly you can test
if the bit is set using tile &
C3.Plugins.Tilemap.TILE_FLIPPED_HORIZONTAL .

You can also use the masks to extract each component of the tile number. For
example tile & C3.Plugins.Tilemap.TILE_ID_MASK will return just the
tile ID, since it removes all the flag bits.

Be sure to first check if the tile is the special value -1 indicating an empty
tile. This is a special value that doesn't use the bit representation so won't

Revision 38 Page 144/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces/tilemap

work when combined with flags or masks.

GetTileWidth()
GetTileHeight()

Get the size of a tile in pixels.

GetMapWidth()
GetMapHeight()

Get the size of the tilemap in tiles.

GetTileAt(x, y)
Get the tile at a given position in tiles (i.e. (0, 0) is the top-left tile of the tilemap,
regardless of the tilemap's position or the tile size). Returns -1 for empty tiles or
tiles outside the tilemap; otherwise use bit operations to determine tile ID or
flags separately.

SetTileAt(x, y, tile)
Set the tile at a given position in tiles. Use -1 to set a tile empty; otherwise use
bit operations to combine the tile ID and flags.

Revision 38 Page 145/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/domelementhandler

The DOMElementHandler interface is used as a base class for DOM
handlers in the DOM-side script (typically domSide.js). See DOM calls in the C3
runtime for more information.

Note that all other base classes are created on the runtime side - i.e. in a
Web Worker when in worker mode. This base class is always created on
the DOM side - i.e. where the document object can be accessed.

AddDOMElementMessageHandler(handler, func)
Add a message handler to receive messages sent by
PostToDOMElement()/PostToDOMElementAsync() in

SDKDOMInstanceBase. The handler should match the string the
message was posted with. func receives the arguments (elem, e) ,
providing both the associated DOM element and the data argument the
message was posted with, if any. When the PostToDOMElementAsync()
variant is used, func can be an async method, and it will be awaited and its
return value sent back to the runtime to resolve the returned promise.

PostToRuntimeElement(handler, elementId, data)
Post a message to the runtime about this element. For example you could post
a "click" message when the element is clicked, in order to trigger On
clicked in the runtime. The message is received by
AddElementMessageHandler() in SDKDOMPluginBase. handler is

a string identifying the message. elementId identifies the element and is
used to find the associated runtime instance; pass the element ID provided in
CreateElement() . data is an optional extra JSON object to pass along

to the message handler.

CreateElement(elementId, e)
Override to create your plugin's DOM element. Note since an element has not
been created yet, the runtime identifies it by an assigned elementId , which

Revision 38 Page 146/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domelementhandler
https://www.construct.net/en/make-games/manuals/addon-sdk/guide/runtime-scripts
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdominstancebase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdompluginbase

needs to be passed along to some other calls. The element state is also passed
as an argument.

DestroyElement(elem)
Optional override called when the runtime destroys the instance associated with
this DOM element. The runtime automatically removes the element from the
DOM, but this provides an opportunity for additional cleanup.

UpdateState(elem, e)
Override to update the state of the DOM element according to the element state
retrieved from GetElementState() in SDKDOMInstanceBase.

Revision 38 Page 147/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdominstancebase

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/domhandler

The DOMHandler interface is a base class for DOM-side scripts (typically in
domSide.js). This means it does not have access to the runtime, since in Web
Worker mode the runtime is hosted in a separate JavaScript context within the
worker. However the DOM-side script does have access to the full DOM APIs,
e.g. document , and using the messaging methods can communicate with the
runtime. See DOM calls in the C3 runtime for more information.

AddRuntimeMessageHandler(handler, callback)
AddRuntimeMessageHandlers(arr)

Add a callback to be run to handle a message posted from a runtime-side
script. The handler is a string identifier. The callback receives the posted data
as an argument. Note that if the caller in the runtime-side script originally used
the PostToDOMAsync method, the callback may be an async function,
and the return value is posted back to the runtime-side script. The
AddRuntimeMessageHandlers variant accepts an array of [handler,

callback] which is convenient when adding multiple handlers.

PostToRuntime(handler, data)
PostToRuntimeAsync(handler, data)

Post a message to a runtime-side script. The handler is a string identifier. The
data must be structurally clonable (since it is posted down a

MessageChannel). The async method returns a promise that resolves with the
runtime-side callback's return value. The non-async method does not return a
value and the runtime-side callback's return value is discarded (i.e. a "fire and
forget" message).

Revision 38 Page 148/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domhandler
https://www.construct.net/en/make-games/manuals/addon-sdk/guide/runtime-scripts
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fWeb_Workers_API%2fStructured_clone_algorithm

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkbehaviorbase

The SDKBehaviorBase interface is used as the base class for your behavior
in the runtime. It is the behavior equivalent of SDKPluginBase.

SDKBehaviorBase cannot be directly constructed; it should only be used as a
base class.

this._runtime
Reference to the associated Runtime that controls execution of the project.

GetRuntime()
Returns this._runtime publicly.

OnCreate()
Optional override called by the runtime when the behavior is created. This is
done early on in the loading process.

GetObjectClasses()
Return a read-only array of ObjectClass that use this kind of behavior. The
order is undefined.

GetInstances()
Return a read-only array of Instance that use this kind of behavior. The order is
undefined.

Revision 38 Page 149/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorbase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkbehaviorinstancebase

The SDKBehaviorInstance interface is used as the base class for runtime
behavior instances in the SDK. When a behavior is added to an object type, each
of its object instances has a behavior instance created and associated with it.

SDKBehaviorInstance cannot be directly constructed; it should only be used
as a base class.

this._behInst
Reference to the BehaviorInstance representing this behavior instance in the
runtime. This allows access to Construct's built-in runtime features for behavior
instances.

this._inst
Reference to the Instance representing the associated instance in the runtime.
This is the object instance that the behavior can control.

this._runtime
Reference to the associated Runtime that controls execution of the project.

this._behaviorType
Reference to the BehaviorType representing the behavior type that this
instance belongs to.

this._sdkType
Reference to your addon's SDK behavior type class, which derives from
SDKBehaviorTypeBase.

Release()
Optional override for when a behavior instance is released.

Revision 38 Page 150/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviorinstance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviortype
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviortypebase

GetBehaviorInstance()
Returns this._behInst publicly.

GetObjectInstance()
Returns this._inst publicly.

GetWorldInfo()
Returns this._inst.GetWorldInfo() , i.e. the WorldInfo for the
associated object instance. Note this is only applicable when added to "world"
type plugins, otherwise it returns null .

GetRuntime()
Returns this._runtime publicly.

GetObjectClass()
Returns this._objectClass publicly.

GetBehaviorType()
Returns this._behaviorType publicly.

GetSdkType()
Returns this._sdkType publicly.

GetBehavior()
Returns your addon's SDK behavior class, which derives from
SDKBehaviorBase.

PostCreate()
Optional override called after the associated object instance has finished being
created. This is useful since the behavior instance constructor is called during
instance creation, so the final state is not ready yet.

Trigger(method)
Fire a trigger condition. The condition must be declared as a trigger in
aces.json. Pass a full reference to the condition method, e.g.
this.Trigger(C3.Behaviors.Bullet.Cnds.OnStep) .

_StartTicking()
_StartTicking2()
_StartPostTicking()
IsTicking()

Revision 38 Page 151/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/worldinfo
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorbase

IsTicking2()
IsPostTicking()
_StopTicking()
_StopTicking2()
_StopPostTicking()

Utility methods to start or stop the runtime calling the Tick() , Tick2() or
PostTick() methods of your instance every tick, and also to check

whether ticking is active. It is recommended to stop ticking whenever the tick
method is no longer needed to reduce the performance overhead of ticking.
Redundant calls to start or stop ticking are ignored. The first call always takes
effect (i.e. calls do not stack - if you make 3 calls to start ticking then 1 call to
stop ticking, ticking is stopped).

Tick()
Optional override that is called every tick just before events are run after
_StartTicking() has been called.

Tick2()
Optional override that is called every tick just after events are run after
_StartTicking2() has been called.

PostTick()
Optional override that is called every tick just after all other behaviors have had
their Tick() methods called. This allows behaviors to observe the state
applied by other behavior's ticking. Note you should use Tick() rather than
PostTick() where possible, since it is not possible to reliably observe the

state applied by other behavior's post-ticking.

GetDebuggerProperties()
Override to return properties to display in the debugger. For more information
see runtime scripts.

SaveToJson()
Optional override to return a JSON object that represents the state of the
instance for savegames.

LoadFromJson(o)
Optional override accepting a JSON object returned by a prior call to
SaveToJson() that represents the state of an instance to load, for

savegames.

CallAction(actMethod, ...args)
Revision 38 Page 152/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/runtime-scripts

Avoid using this wherever possible. It usually indicates poor design.
Actions are intended to be used in event sheets only and are not meant
to act like an API. Use normal JavaScript method calls instead.

Convenience method to run an action method with the given parameters. For
example:
this.CallAction(C3.Behaviors.MyAddon.Acts.MyAction,

"foo", "bar")

CallExpression(expMethod, ...args)

Avoid using this wherever possible. It usually indicates poor design.
Expressions are intended to be used in event sheets only and are not
meant to act like an API. Use normal JavaScript method calls instead.

Convenience method to run an expression method with the given parameters.
Returns the value returned by the expression. For example: const value
=
this.CallExpression(C3.Behaviors.MyAddon.Exps.MyExpression)

GetScriptInterfaceClass()
Return a custom class to instantiate for the script interface in Construct's
scripting feature. See the SDK downloads for sample usage of a custom script
interface.

GetScriptInterface()
Return the actual script interface used for this behavior instance in Construct's
scripting feature. This is an IBehaviorInstance or derivative.

DispatchScriptEvent(name, cancelable, additionalProperties)
Fire an event on the script interface for the behavior instance (as with
dispatchEvent() on the script interface). name is a string of the event

name. cancelable is a boolean indicating if the event can be stopped with
preventDefault() . The event object will have the default properties as

described in Behavior instance event in the scripting reference. Additional
properties can optionally be set by passing an object for
additionalProperties whose properties will be added to the event

object. For example: DispatchScriptEvent("myevent", false, {
extraProperty: 5 })

Revision 38 Page 153/200

https://www.construct.net/en/make-games/manuals/addon-sdk
https://www.construct.net/en/make-games/manuals/construct-3/scripting/scripting-reference/object-interfaces/ibehaviorinstance
https://www.construct.net/en/make-games/manuals/construct-3/scripting/scripting-reference/interfaces/behavior-instance-event

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkbehaviortypebase

The SDKBehaviorTypeBase interface is used as the base class for runtime
behavior types in the SDK. A behavior type corresponds to a behavior listed in the
Behaviors dialog. Behavior types have multiple behavior instances, each
associated with an object instance. It is the behavior equivalent of SDKTypeBase.

SDKBehaviorTypeBase cannot be directly constructed; it should only be used
as a base class.

this._objectClass
Reference to the ObjectClass representing the object type that this behavior
type belongs to.

this._behaviorType
Reference to the BehaviorType representing this behavior type in the runtime.

this._runtime
Reference to the associated Runtime that controls execution of the project.

this._behavior
Reference to your addon's SDK behavior class, which derives from
SDKBehaviorBase.

OnCreate()
Optional override called when the runtime starts up and creates all behavior
types before the project starts.

GetObjectClass()
Returns this._objectClass publicly.

GetBehaviorType()
Returns this._behaviorType publicly.

Revision 38 Page 154/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviortypebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdktypebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviortype
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorbase

GetRuntime()
Returns this._runtime publicly.

GetBehavior()
Returns this._behavior publicly.

Revision 38 Page 155/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkdominstancebase

The SDKDOMInstanceBase interface is used as the base class for runtime
instances that create a DOM element. It derives from SDKWorldInstanceBase.

SDKDOMInstanceBase cannot be directly constructed; it should only be used
as a base class.

PostToDOMElement(handler, data)
PostToDOMElementAsync(handler, data)

Post a message from the runtime instance to the DOM side. The message is
received using AddDOMElementMessageHandler() in
DOMElementHandler. handler is a string identifying the kind of message.
data is a JSON object that is forwarded with the message to provide

additional details. The async variant returns a promise that awaits an async
handler on the DOM side and forwards the return value back to the runtime,
which the returned promise resolves with. The non-async variant simply posts
a message and ignores the result (i.e. fire-and-forget).

CreateElement(data)
Instruct the runtime to create a DOM element for this instance. It will end up
calling CreateElement() in DOMElementHandler with data (an
optional object with additional details to create with). The runtime associates the
resulting element with this instance.

FocusElement()
BlurElement()

Helper methods to manage calling focus() and blur() on the
instance's associated DOM element.

SetElementCSSStyle(prop, val)
Helper method to set a CSS style on the instance's associated DOM element.
For example SetElementCSSStyle("font-family", "sans-
serif") will be forwarded to elem.style.fontFamily = "sans-

Revision 38 Page 156/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdominstancebase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkworldinstancebase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domelementhandler
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domelementhandler

serif" on the DOM side.

GetElementState()
Override to return a JSON object representing the state of the DOM element,
e.g. the text content. This is used by CreateElement() and
UpdateElementState() to retrieve state to pass to the DOM side.

UpdateElementState()
Send a message from the runtime to the DOM side with the element state
(retrieved from GetElementState()). This results in a call to
UpdateState(elem, e) on the DOM side. This is a convenient way to

make sure any changes to the DOM element are applied.

Revision 38 Page 157/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkdompluginbase

The SDKDOMPluginBase interface is used as the base class for a plugin in the
runtime that manages a DOM element. Note the constructor also requires passing
the DOM_COMPONENT_ID . See the section DOM calls in the C3 runtime for
more information.

SDKDOMPluginBase cannot be directly constructed; it should only be used as
a base class.

SDKDOMPluginBase derives from SDKPluginBase.

AddElementMessageHandler(handler, func)
Add a message handler to receive messages posted by
PostToRuntimeElement() in DOMElementHandler. handler must

match the string passed to PostToRuntimeElement() . func accepts
two arguments: the SDK instance, and an optional object with extra details
passed to PostToRuntimeElement() . Typically this function simply
forwards the handler to an instance method, e.g.
this.AddElementMessageHandler("click", (sdkInst, e) =>

sdkInst._OnClick(e));

Revision 38 Page 158/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdompluginbase
https://www.construct.net/en/make-games/manuals/addon-sdk/guide/runtime-scripts
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/domelementhandler

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkinstancebase

The SDKInstanceBase interface is used as the base class for runtime
instances in the SDK. For "world" type plugins, instances instead derive from
SDKWorldInstanceBase which itself derives from SDKInstanceBase .

SDKInstanceBase cannot be directly constructed; it should only be used as a
base class.

this._inst
Reference to the Instance representing this instance in the runtime. This allows
access to Construct's built-in runtime features for instances.

this._runtime
Reference to the associated Runtime that controls execution of the project.

this._objectClass
Reference to the ObjectClass representing the object type that this instance
belongs to.

this._sdkType
Reference to your addon's SDK type class, which derives from SDKTypeBase.

Release()
Optional override for when an instance is released.

GetInstance()
Returns this._inst publicly.

GetRuntime()
Returns this._runtime publicly.

Revision 38 Page 159/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkworldinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdktypebase

GetObjectClass()
Returns this._objectClass publicly.

GetSdkType()
Returns this._sdkType publicly.

GetPlugin()
Returns your addon's SDK plugin class, which derives from SDKPluginBase.

Trigger(method)
Fire a trigger condition. The condition must be declared as a trigger in
aces.json. Pass a full reference to the condition method, e.g.
this.Trigger(C3.Plugins.Sprite.Cnds.OnAnimFinished) .

AddDOMMessageHandler(handler, callback)
AddDOMMessageHandlers(arr)

Add a callback to be run to handle a message posted from a DOM-side script.
The handler is a string identifier. The callback receives the posted data as an
argument. Note that if the caller in the DOM-side script originally used the
PostToRuntimeAsync method, the callback may be an async function,

and the return value is posted back to the DOM-side script. The
AddDOMMessageHandlers variant accepts an array of [handler,

callback] which is convenient when adding multiple handlers.

PostToDOM(handler, data)
PostToDOMAsync(handler, data)

Post a message to a DOM-side script. The handler is a string identifier. The
data must be structurally clonable (since it is posted down a

MessageChannel).
The async method returns a promise that resolves with the DOM-side
callback's return value. The non-async method does not return a value and the
DOM-side callback's return value is discarded (i.e. a "fire and forget" message).

_StartTicking()
_StartTicking2()
IsTicking()
IsTicking2()
_StopTicking()
_StopTicking2()

Utility methods to start or stop the runtime calling the Tick() or Tick2()
methods of your instance every tick, and also to check whether ticking is active.
It is recommended to stop ticking whenever the tick method is no longer needed

Revision 38 Page 160/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase
https://www.construct.net/out?u=https%3a%2f%2fdeveloper.mozilla.org%2fen-US%2fdocs%2fWeb%2fAPI%2fWeb_Workers_API%2fStructured_clone_algorithm

to reduce the performance overhead of ticking. Redundant calls to start or stop
ticking are ignored. The first call always takes effect (i.e. calls do not stack - if
you make 3 calls to start ticking then 1 call to stop ticking, ticking is stopped).

Tick()
Optional override that is called every tick just before events are run after
_StartTicking() has been called.

Tick2()
Optional override that is called every tick just after events are run after
_StartTicking2() has been called.

GetDebuggerProperties()
Override to return properties to display in the debugger. For more information
see runtime scripts.

SaveToJson()
Optional override to return a JSON object that represents the state of the
instance for savegames.

LoadFromJson(o)
Optional override accepting a JSON object returned by a prior call to
SaveToJson() that represents the state of an instance to load, for

savegames.

CallAction(actMethod, ...args)

Avoid using this wherever possible. It usually indicates poor design.
Actions are intended to be used in event sheets only and are not meant
to act like an API. Use normal JavaScript method calls instead.

Convenience method to run an action method with the given parameters. For
example: this.CallAction(C3.Plugins.MyAddon.Acts.MyAction,
"foo", "bar")

CallExpression(expMethod, ...args)

Avoid using this wherever possible. It usually indicates poor design.
Expressions are intended to be used in event sheets only and are not
meant to act like an API. Use normal JavaScript method calls instead.

Convenience method to run an expression method with the given parameters.
Returns the value returned by the expression. For example: const value
=

Revision 38 Page 161/200

https://www.construct.net/make-games/manuals/addon-sdk/guide/runtime-scripts

this.CallExpression(C3.Plugins.MyAddon.Exps.MyExpression)

GetScriptInterfaceClass()
Return a custom class to instantiate for the script interface in Construct's
scripting feature. See the SDK downloads for sample usage of a custom script
interface.

GetScriptInterface()
Return the actual script interface used for this instance in Construct's scripting
feature. This is an IInstance or derivative.

DispatchScriptEvent(name, cancelable, additionalProperties)
Fire an event on the script interface for the instance (as with
dispatchEvent() on the script interface). name is a string of the event

name. cancelable is a boolean indicating if the event can be stopped with
preventDefault() . The event object will have the default properties as

described in Instance event in the scripting reference. Additional properties can
optionally be set by passing an object for additionalProperties whose
properties will be added to the event object. For example:
DispatchScriptEvent("myevent", false, { extraProperty: 5

})

These methods relate to the use of wrapper extensions. Refer to that manual
section for more details; for completeness the relevant methods are also included
here.

SetWrapperExtensionComponentId(componentId)
Set the component ID of the wrapper extension. This must match the
component ID set by the wrapper extension and must be unique to all wrapper
extensions in use. It must be called prior to using any other wrapper extension
methods.

IsWrapperExtensionAvailable()
Returns a boolean indicating whether the corresponding wrapper extension was
successfully loaded. If this returns false then no messages sent to the wrapper
extension will be received, and async messages will return a promise that never
resolves.

AddWrapperExtensionMessageHandler(messageId, callback)
AddWrapperMessageHandlers(list)

Add a callback to be run to handle a message posted from the corresponding
Revision 38 Page 162/200

https://www.construct.net/en/make-games/manuals/addon-sdk
https://www.construct.net/en/make-games/manuals/construct-3/scripting/scripting-reference/object-interfaces/iinstance
https://www.construct.net/en/make-games/manuals/construct-3/scripting/scripting-reference/interfaces/instance-event
https://www.construct.net/make-games/manuals/addon-sdk/guide/wrapper-extensions

wrapper extension. The callback receives the JSON data sent from the wrapper
extension as an argument. The AddWrapperMessageHandlers variant
accepts an array of [messageId, callback] which is convenient when
adding multiple handlers.

SendWrapperExtensionMessage(messageId, params)
SendWrapperExtensionMessageAsync(messageId, params)

Send a message to the wrapper extension. The message ID is used to identify
the kind of message. params is an optional array of parameters to provide.
These may only be boolean, number or string type values. The async variant
returns a Promise that resolves when the wrapper extension responds to the
message. The promise resolves with the JSON data sent from the wrapper
extension.

Revision 38 Page 163/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkpluginbase

The SDKPluginBase interface is used as the base class for your plugin in the
runtime.

SDKPluginBase cannot be directly constructed; it should only be used as a
base class.

Note plugins that create a DOM element should derive from SDKDOMPluginBase
instead.

this._runtime
Reference to the associated Runtime that controls execution of the project.

GetRuntime()
Returns this._runtime publicly.

OnCreate()
Optional override called by the runtime when the plugin is created. This is done
early on in the loading process.

IsSingleGlobal()
Return a boolean indicating if the plugin specified it was single-global.

IsWorldType()
Return a boolean indicating if the plugin specified it was the "world" type.

IsRotatable()
Return a boolean indicating if the plugin specified it was rotatable.

MustPreDraw()
Return a boolean indicating if the plugin specified it must pre-draw when
compositing effects.

Revision 38 Page 164/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdompluginbase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime

HasEffects()
Return a boolean indicating if the plugin specified it could have effects added to
its instances.

Revision 38 Page 165/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdktypebase

The SDKTypeBase interface is used as the base class for runtime object types
in the SDK. An object type corresponds to an object listed in the Project Bar.
Object types may have multiple instances.

SDKTypeBase cannot be directly constructed; it should only be used as a base
class.

this._objectClass
Reference to the ObjectClass representing the object type that this instance
belongs to.

this._runtime
Reference to the associated Runtime that controls execution of the project.

this._plugin
Reference to your addon's SDK plugin class, which derives from
SDKPluginBase.

GetObjectClass()
Returns this._objectClass publicly.

GetRuntime()
Returns this._runtime publicly.

GetPlugin()
Returns this._plugin publicly.

OnCreate()
Optional override called when the runtime starts up and creates all object types
before the project starts.

Revision 38 Page 166/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdktypebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase

LoadTextures(renderer)
Optional override called by the runtime when it wants your object type's textures
to be created. renderer is the same class used in the editor as
IWebGLRenderer. This method should return a promise that resolves when all
textures have been loaded.

ReleaseTextures()
Optional override called by the runtime when it wants your object type's textures
to be released. This method is synchronous. Release any WebGL textures and
drop the references to them.

OnDynamicTextureLoadComplete()
Optional override called by the runtime when a dynamic texture load has
completed. If an object is created at runtime that does not already have its
textures loaded, the runtime will call LoadTextures() but continue running
the game while the textures are loaded asynchronously. When they finish
loading, the runtime then calls this override so you have an opportunity to
update any references to the newly loaded texture.

Revision 38 Page 167/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/base-classes/sdkworldinstancebase

The SDKWorldInstanceBase interface is used as the base class for runtime
instances for "world" type plugins. It derives from SDKInstanceBase.

SDKWorldInstanceBase cannot be directly constructed; it should only be
used as a base class.

Note instances that create a DOM element should derive from
SDKDOMInstanceBase instead.

this._worldInfo
Return the WorldInfo object that represents this instance's state in the "world"
(e.g. its size, position, angle etc). In the runtime this is held as a separate
object.

GetWorldInfo()
Returns this._worldInfo publicly.

HandleWebGLContextLoss()
Utility method to enable calling of the OnWebGLContextLost() and
OnWebGLContextRestored() methods.

OnWebGLContextLost()
OnWebGLContextRestored()

Optional overrides for handling WebGL context loss. This is only necessary if
your addon creates any WebGL resources. These overrides are only called if
your instance first calls HandleWebGLContextLoss() (normally in the
constructor to enable these callbacks for the lifetime of the instance). In a
context loss event, all WebGL resources have been released, so any
references to them must be dropped. In a context restored event the resources
may be recreated again if necessary. Alternatively they can be left released if a
lazy-loading approach is used.

Revision 38 Page 168/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkworldinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkinstancebase
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkdominstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/worldinfo

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/event-sheet-classes/eventblock

The EventBlock class represents an event block in an event sheet. This is
also used as the "current event" in the EventStack.

EventBlocks consist of conditions and actions and are either AND blocks (the
default), running when all conditions are met, or OR blocks, running when any
condition is met.

Construct tracks the "SOL modifiers" for each EventBlock. These are the
ObjectClasses that the event may pick from, i.e. the SOLs that may be modified
by running the event. This is an important consideration when working with
events. Alterations to SOLs that are not in the SOL modifiers list are not permitted.

The Retrigger() method is useful for implementing looping conditions. It
should be used as such:

The following code example demonstrates the necessary calls.

MyLoopingCondition()
{
 // Get necessary references
 const runtime = this._runtime;
 const eventSheetManager = runtime.GetEventSheetManager();
 const currentEvent = runtime.GetCurrentEvent();

Get the current event stack frame1

Push a new event stack frame2

In a loop:3
Push a copy of the SOL1

Retrigger the current event, passing both the old and new stack frames2

Pop the SOL3

Pop the event stack frame4

Return false from the condition method. (The event has already been executed
the required number of times, and if it returns true, Construct will continue to run
the event as normal, which is usually unnecessary.)

5

Revision 38 Page 169/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventblock
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstack
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass

 const solModifiers = currentEvent.GetSolModifiers();
 const eventStack = runtime.GetEventStack();

 // Get current stack frame and push new one
 const oldFrame = eventStack.GetCurrentStackFrame();
 const newFrame = eventStack.Push(currentEvent);

 for (const item of myArray)
 {
 // ... optionally update state here ...

 // Push a copy of the current SOL
 eventSheetManager.PushCopySol(solModifiers);

 // Retrigger the current event, running a single loop iteration
 currentEvent.Retrigger(oldFrame, newFrame);

 // Pop the current SOL
 eventSheetManager.PopSol(solModifiers);
 }

 // Pop the event stack frame
 eventStack.Pop();

 // Return false since event already executed
 return false;
}

GetEventSheetManager()
Return the associated EventSheetManager.

GetRuntime()
Return the associated Runtime.

GetParent()
Return the parent EventBlock, or null if this is a top-level event.

IsOrBlock()
If true , this is an OR block, else it is an AND block.

GetSolModifiers()
Revision 38 Page 170/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventsheetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime

Return an array of ObjectClass that the event block may modify.

Retrigger(oldFrame, newFrame)
Re-run the current event. This is useful for implementing looping conditions.
Prior to calling this, you must push a new EventStackFrame, and pass both the
old and the new stack frames to this call. Be sure to pop the pushed stack
frame once complete. See the code sample above.

Revision 38 Page 171/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/event-sheet-classes/eventsheetmanager

The EventSheetManager class manages everything in the runtime relating to
the event system. Generally any runtime calls relating to events will be made
using EventSheetManager, although the Runtime class provides some shorthand
methods. The EventSheetManager is typically accessed via the runtime
GetEventSheetManager() method.

Many methods are only relevant to call in condition, action or expression methods
of an addon, such as retrieving the current event. When not running events,
methods relating to the events being executed do not apply and may throw
exceptions.

GetRuntime()
Return the associated Runtime.

GetEventStack()
Return the EventStack representing the current execution stack in the event
system.

GetCurrentEventStackFrame()
Return the current EventStackFrame, representing the current execution
context in the event system. This is a shorthand for
GetEventStack().GetCurrentStackFrame() .

GetCurrentEvent()
Return the current EventBlock being executed. This is a shorthand for
GetCurrentEventStackFrame().GetCurrentEvent() .

IsInTrigger()
True if execution is currently within a triggered event.

ClearSol(objectClasses)
For each ObjectClass in the given array, reset the selected object list (SOL)
back to "all picked" state.

Revision 38 Page 172/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventsheetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstack
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventblock
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass

PushCleanSol(objectClasses)
PushCopySol(objectClasses)

For each ObjectClass in the given array, push a new selected object list (SOL)
to the SOL stack. PushCleanSol pushes cleared SOLs in the "all picked"
state, whereas PushCopySol pushes a copy of the top SOL. These
methods are necessary when retriggering events. Every pushed SOL must
have a corresponding PopSol call.

PopSol(objectClasses)
For each ObjectClass in the given array, pop the top SOL on the SOL stack.
This must be called after PushCleanSol or PushCopySol .

Revision 38 Page 173/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/event-sheet-classes/eventstack

The EventStack class represents the execution stack in the event system. It
is analogous to the stack in traditional programming languages, but adapted to the
event system. For example triggering an event will push a new event stack frame,
run the trigger, pop the event stack frame, and then resume from the calling event.
This ensures each level of execution in the event system runs with its own
context.

In Construct the main purpose of the event stack is to track the current event. The
event stack is accessible via EventSheetManager's GetEventStack()
method.

GetEventSheetManager()
Return the associated EventSheetManager.

GetRuntime()
Return the associated Runtime.

GetCurrentStackFrame()
Return the current EventStackFrame.

Push(currentEvent)
Push a new EventStackFrame to the event stack, and return it. The initial
current EventBlock for the new stack frame must be passed to this call. Every
push must have a corresponding Pop call.

Pop()
Pop the top EventStackFrame from the event stack. This must be called after
every Push call.

Revision 38 Page 174/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstack
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventsheetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventsheetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventblock

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/event-sheet-classes/eventstackframe

An EventStackFrame represents a single frame in the EventStack. This
provides context for one layer of execution in the event system, much like a stack
in a traditional programming language. Its main purpose is to track the current
event.

GetCurrentEvent()
Return the currently executing EventBlock.

Revision 38 Page 175/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstack
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventblock

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/manager-classes/assetmanager

The AssetManager class manages everything in the runtime relating to assets
(associated project files). In general project files simply cannot be fetched by their
URL, because in preview mode they are only stored locally, and some platforms
like Cordova have limitations on being able to fetch URLs so need to use different
approaches to read files. AssetManager handles all of these details and should
always be used to access any other files in the project.

GetRuntime()
Return the associated Runtime.

async FetchBlob(url)
Fetch a blob from a given URL. Returns a promise that resolves with the
fetched blob. Note this method handles various cross-platform details when
used to fetch project files so is preferable if the content being requested will be
used as a blob.

async FetchJson(url)
As with FetchBlob() , but returns the content in JSON format.

async GetProjectFileUrl(url)
Obtain a URL to a given project filename that can be directly fetched. On some
platforms this will be translated to a blob URL; in other cases it will simply return
the filename if it can already be directly fetched. Note this method returns a
promise that resolves with the URL to use.

Revision 38 Page 176/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/manager-classes/assetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/model-classes/layer

The Layer class represents a layer in the runtime.

GetLayout()
Return the Layout the layer belongs to.

GetRuntime()
Return the Runtime for this layer.

GetName()
Return a string of the name of the layer.

GetIndex()
Return the zero-based index of this layer on its layout.

SetVisible(v)
IsVisible()

Set or get a boolean determining whether the layer is visible.

GetViewport()
Return a C3.Rect representing the axis-aligned bounding box of the visible
area of the layer in layout co-ordinates.

SetOpacity(o)
GetOpacity()

Set and get the opacity of the layer in the [0,1] range. 0 is fully transparent and
1 is opaque. This changes the alpha component of the layer color.

SetOwnScale(s)
GetOwnScale()

Set and get the layer's scale as a factor.

GetRenderScale()
Get the scale the layer is rendered at. This is the scale relevant to draw calls.

Revision 38 Page 177/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layout
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect

GetDisplayScale()
Get the scale the layer is rendered at. This is the scale relevant for translating
co-ordinates from the canvas/window to the layer.

GetNormalScale()
Get the scale of the layer only using its own scale, the layout scale, and the
scale rate.

SetScaleRate(r)
GetScaleRate()

Set and get the scale rate of the layer as a multiplier.

SetParallaxX(px)
SetParallaxY(py)
SetParallax(px, py)
GetParallaxX()
GetParallaxY()

Set and get the X and Y parallax ratios for the layer, as multipliers.

SetAngle(a)
GetOwnAngle()

Set and get the layer's angle in radians. Use C3.toDegrees() and
C3.toRadians() to convert from degrees to radians.

GetAngle()
Get the layer's display angle in radians. This is also affected by the layout
angle.

GetBackgroundColor()
Return a C3.Color representing the layer background color. Only the RGB
components are used.

SetTransparent(t)
IsTransparent()

Set and get a boolean indicating if the layer background is transparent.

SetBlendMode(bm)
GetBlendMode()

Set and get the layer blend mode, as an index in to the dropdown list used in
Construct's Blend mode property. E.g. 0 is "normal", 1 is "additive", etc.

MoveInstanceAdjacent(inst, otherInst, isAfter)
Revision 38 Page 178/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color

Move the Instance inst adjacent to otherInst in the Z order. If
isAfter is true it moves inst just after (above) otherInst in the Z

order; otherwise it moves inst just before (below).

CanvasCssToLayer(x, y)
LayerToCanvasCss(x, y)

Translate CSS pixel co-ordinates on the canvas to layout co-ordinates on the
layer, and vice versa. Returns [x, y] .

DrawSurfaceToLayer(x, y)
LayerToDrawSurface(x, y)

Translate device pixels on the rendered surface to layout co-ordinates on the
layer, and vice versa. Returns [x, y] .

Revision 38 Page 179/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/model-classes/layout

The Layout class represents a layout in the runtime.

GetRuntime()
Return the Runtime for this layout.

GetName()
Return a string of the name of the layout.

SetScrollX(x)
SetScrollY(y)
GetScrollX()
GetScrollY()

Set and get the scroll position in layout co-ordinates.

SetScale(s)
GetScale()

Set and get the layout scale as a multiplier. Note that the layout scale affects all
layers.

SetAngle(a)
GetAngle()

Set and get the layout angle in radians. Note that the layout angle affects all
layers. Use C3.toDegrees() and C3.toRadians() to convert from
degrees to radians.

GetWidth()
GetHeight()

Get the size of the layout.

GetLayerCount()
Return the number of Layers on this layout.

GetLayer(p)
GetLayerByIndex(i)

Revision 38 Page 180/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/model-classes/layout
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer

GetLayerByName(name)
Get a Layer on the layout either by its zero-based index or a case-insensitive
string of its name. The GetLayer() method accepts either an index or a
name.

Revision 38 Page 181/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/behaviorinstance

The BehaviorInstance class represents an instance of a behavior in the
runtime. When a behavior is added to an object class, the runtime creates a
BehaviorInstance for every instance of the object class that is created. The
BehaviorInstance can then control its associated instance.

GetSdkInstance()
Return the behavior-specific behavior instance class, which derives from
SDKBehaviorInstanceBase.

GetObjectInstance()
Return the Instance associated with this behavior instance.

GetBehaviorType()
Return the BehaviorType this behavior belongs to.

GetBehavior()
Return the behavior-specific class that derives from SDKBehaviorBase.

GetRuntime()
Return the Runtime for this behavior instance.

Revision 38 Page 182/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviorinstance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviortype
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorbase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/behaviortype

The BehaviorType class represents a behavior that has been added to an
object class. It is the behavior-equivalent of ObjectClass.

GetSdkType()
Return the behavior-specific behavior type class, which derives from
SDKBehaviorTypeBase.

GetRuntime()
Get the Runtime for the behavior type.

GetObjectClass()
Get the ObjectClass that the behavior type was added to. Note this can be
either an object type or a family.

GetBehavior()
Return the behavior-specific class that derives from SDKBehaviorBase.

GetName()
Return a string of the name of the behavior type.

Revision 38 Page 183/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviortype
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviortypebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorbase

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/container

The Container class represents a group of ObjectClass that have been put in
a container together.

GetRuntime()
Return the Runtime for this container.

GetObjectTypes()
Return a read-only array of ObjectClass representing the object classes that
have been added to the container.

Revision 38 Page 184/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/container
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/instance

The Instance class represents an object instance in the runtime.

GetWorldInfo()
For "world" type plugins, get the instance's associated WorldInfo. This allows
modification of the position, size, angle etc.

GetRuntime()
Get the Runtime for this instance.

GetSdkInstance()
Get the plugin-specific instance class for this instance, which derives from
SDKInstanceBase. See also Addon interfaces for the public APIs exposed by
some of the built-in addons in Construct.

GetObjectClass()
Get the ObjectClass representing the object type this instance belongs to.

GetPlugin()
Return the plugin class for this instance, which derives from SDKPluginBase.

BelongsToObjectClass(objectClass)
Returns true if this instance's object class is the given object class, or the given
object class is a family and this instance's object class is a member of that
family.

GetImagePoint(nameOrIndex)
Get an image point from the instance by either its index or a string of its name.
Note image points are returned in a [0,1] range, such that 0.5 represents the
middle.

IsInContainer()
Returns true if the instance is in a container.

GetSiblings()
Revision 38 Page 185/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/worldinfo
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkinstancebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/addon-interfaces
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase

Return a read-only array of sibling instances for this instance, i.e. its associated
other instances in its container. This is only applicable if the instance is in a
container.

GetUID()
Get the unique identifier (UID) for this instance. UIDs are unique integer
numbers assigned to every instance, and never change during the lifetime of
the instance.

GetIID()
Get the instance identifier (IID) for this instance. IIDs are the zero-based index
of this instance in its object type's instance list. Note IIDs can change during
the lifetime of the instance; if an instance with a lower IID is destroyed, all
instances with higher IIDs are renumbered so the IIDs are contiguous from 0.

GetBehaviorInstances()
Return a read-only array of BehaviorInstance for this instance.

GetBehaviorInstanceFromCtor(ctor)
Look up a behavior instance by its behavior constructor. For example
GetBehaviorInstanceFromCtor(C3.Behaviors.Platform) will

return the first BehaviorInstance for the Platform behavior if the instance has
one, else null .

GetBehaviorSdkInstanceFromCtor(ctor)
As with GetBehaviorInstanceFromCtor(ctor) , but returns the
behavior-specific behavior instance class (which derives from
SDKBehaviorInstanceBase) instead.

GetInstanceVariableCount()
Return the number of instance variables for this instance.

SetInstanceVariableValue(index, value)
GetInstanceVariableValue(index)

Set or get an instance variable value by its index. Note the type of the instance
variable will be preserved.

GetSavedDataMap()
GetUnsavedDataMap()

Return a Map to store additional data to associate with this instance. Use
string keys only, and ensure keys are unique. The saved data map is written to
savegame files so should be used for persistent state. The unsaved data map

Revision 38 Page 186/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviorinstance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviorinstance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkbehaviorinstancebase

is not written to savegame files so should be used for transient storage or
caching.

Do not simply add new JavaScript object properties to Construct's
runtime classes. This will cause the JavaScript engine to deoptimise
performance for all code using the class. These data maps are provided
as a convenient alternative. You can also use a WeakMap with
Instance keys to associate data with instances without leaking

memory or modifying the instance class at all.

GetParent()
Return the parent instance in the hierarchy, or null if none.

GetTopParent()
Return the top parent of this instance in the hierarchy (which by definition has
no parent itself), or null if none.

*parents()
A generator method that can be used to iterate all the instance's parents, up to
the top parent.

GetChildren()
Return an array of all the children that have been added to this instance. The
array may be empty if no children have been added.

*children()
*allChildren()

Generator methods that can be used to iterate all the instance's children. The
allChildren() variant is recursive, so will also iterate children-of-children.

AddChild(childInst, opts)
Add another instance as a child of this instance in the hierarchy. This instance
becomes its parent. The child will move, scale and rotate with this instance
according to the provided options specified in the object opts , which
supports the following properties:

transformX : move the child with this instance's X position

transformY : move the child with this instance's Y position
Revision 38 Page 187/200

transformWidth : scale the child with this instance's width

transformHeight : scale the child with this instance's height

transformAngle : rotate the child with this instance's angle

transformZElevation : move the child with this instance's Z elevation

destroyWithParent : automatically destroy the child if this instance is
destroyed

Each option is a boolean which defaults to false if omitted, so only true
properties need to be specified.

Instances can only have one parent. If the given instance is already
added as a child of something else, this method will have no effect.

RemoveChild(childInst)
Remove an existing child that was previously added with AddChild() . The
child is detached from the hierarchy and this instance will no longer act as its
parent. The removed child still keeps its own children, if it has any.

Revision 38 Page 188/200

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/objectclass

The ObjectClass class represents an object type or a family in the runtime.
An object type is a kind of object that appears in the Project Bar, e.g. "Sprite2".
Families are groups of object types. Generally object types and families can be
treated the same. However in some cases you may need to treat them separately.

The runtime refers to something that is either an object type or a family as an
"object class", hence the name ObjectClass .

GetSdkType()
Return the plugin-specific SDK type class, which derives from SDKTypeBase.

GetPlugin()
Return the plugin class for this object class, which derives from
SDKPluginBase.

GetRuntime()
Return the Runtime for this object class.

GetName()
Return a string of the name of this object class.

IsGlobal()
Return a boolean indicating if this is a global object class. Global instances are
not destroyed when changing layout.

IsWorldType()
Return a boolean indicating if the associated plugin is a "world" type.

GetBehaviorTypes()
Return a read-only array of BehaviorType representing behaviors added to this
object class.

IsFamily()
Return a boolean indicating if this is an object type (if false) or family (if true).

Revision 38 Page 189/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdktypebase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/base-classes/sdkpluginbase
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/behaviortype

GetFamilies()
For object types only. Return a read-only array of families (also
ObjectClass) that this object type belongs to.

GetFamilyMembers()
For families only. Return a read-only array of object types (also
ObjectClass) that are in this family.

GetInstances()
Return a read-only array of Instance that have been created.

GetSingleGlobalInstance()
For single-global plugins only. Returns the single-global instance of the object.

GetFirstPicked()
Return the first picked Instance in an action, condition or expression.

IsInContainer()
Return true if the object class is in a container.

GetContainer()
If the object class is in a container, return the Container class representing the
container. Otherwise returns null .

HasSolidBehavior()
HasNoSaveBehavior()
HasPersistBehavior()

Convenience methods to indicate if the given behavior has been added to the
object class.

Revision 38 Page 190/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/container

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/object-classes/worldinfo

The WorldInfo class represents the state of an instance in the "world" (i.e.
the Layout it is in). This includes information like its position, size, angle, Z order,
layer and so on.

Only "world" type plugin instances have an associated WorldInfo . It is
typically obtained by using the Instance GetWorldInfo() method.

For performance reasons, WorldInfo is a separate object in the runtime,
rather than using a different base class for world instances.

For performance reasons, changing the X, Y, angle, width, height or origin does
not update the corresponding bounding box, which is stored separately. If any of
these properties are changed, you must call SetBboxChanged() afterwards to
ensure the runtime re-calculates the bounding box.

GetInstance()
Return the associated Instance that this WorldInfo represents state for.

SetX(x)
SetY(y)
SetXY(x, y)
GetX()
GetY()

Set and get the position of the instance in layout co-ordinates.

OffsetX(x)
OffsetY(y)
OffsetXY(x, y)

Add to the X and Y components of the instance's position. For example
OffsetX(5) is equivalent to SetX(GetX() + 5) .

SetWidth(w)
Revision 38 Page 191/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/worldinfo
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layout
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

SetHeight(h)
SetSize(w, h)
GetWidth()
GetHeight()

Set and get the width and height of the instance in layout co-ordinates.

SetAngle(a)
GetAngle()

Set and get the angle of the instance in radians. Use C3.toDegrees() and
C3.toRadians() to convert from degrees to radians.

SetOriginX(x)
SetOriginY(y)
GetOriginX()
GetOriginY()

Set and get the origin of the instance as a normalized position in the [0,1]
range, i.e. 0.5 is the middle.

Note some plugins control the origin themselves, such as Sprite applying
a new origin when the animation frame changes, so changes can be
overwritten.

SetBboxChanged()
Mark the instance's bounding box as having been changed. Call this after
altering the position, size, angle or origin of the instance.

GetBoundingBox()
Return a C3.Rect representing the axis-aligned bounding box of the instance in
layout co-ordinates.

GetBoundingQuad()
Return a C3.Quad representing the bounding quad of the instance in layout co-
ordinates, which is essentially the rotated bounding box.

SetOpacity(o)
GetOpacity()

Set and get the opacity of the instance in the [0,1] range. 0 is fully transparent
and 1 is opaque. This changes the alpha component of the instance color.

SetUnpremultipliedColor(c)
Set the RGB components of the instance color. This applies a built-in color
multiply effect which appears like a tint. As with opacity, color values are in the

Revision 38 Page 192/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/rect
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/quad

[0,1] range. The default is RGB 1,1,1 (white) which means the instance
appears with normal colors. Pass a C3.Color as the parameter. The runtime
internally uses premultiplied alpha for best rendering quality; in this method the
RGB values do not need to be premultiplied with the alpha (opacity) value,
since it will apply the premultiplication for you.

GetUnpremultipliedColor()
GetPremultipliedColor()

Get the instance color as a read-only C3.Color, either without or with
premultiplied alpha (respectively). The instance color includes the opacity in the
alpha channel.

HasDefaultColor()
Returns true if the instance color RGBA value equals (1,1,1,1), else false.

SetBlendMode(bm)
GetBlendMode()

Set and get the instance blend mode, as an index in to the dropdown list used
in Construct's Blend mode property. E.g. 0 is "normal", 1 is "additive", etc.

GetLayer()
Get the Layer the instance is currently on.

GetLayout()
Get the Layout the instance currently belongs to.

SetVisible(v)
IsVisible()
Set and get the visible state for the instance. This is a boolean that hides the
instance when set to false .

SetCollisionEnabled(e)
IsCollisionEnabled()

Set and get a boolean indicating whether collisions are enabled for this
instance.

ContainsPoint(x, y)
Test if a point in layout co-ordinates intersects this instance, respecting its
collision polygon and collisions enabled flag.

Revision 38 Page 193/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color
https://www.construct.net/make-games/manuals/addon-sdk/reference/geometry-interfaces/color
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layout

CreateMesh(hsize, vsize)
Create a mesh for deforming the appearance of the object with the given
number of mesh points horizontally and vertically. The minimum size is 2.

ReleaseMesh()
Releases any mesh that has been created, reverting back to default rendering
of the object with no mesh distortion. Ignored if no mesh created.

HasMesh()
Return a boolean indicating whether a mesh has been created for this object.

SetMeshPoint(col, row, opts)
Alter a given point in a created mesh given by its zero-based column and row.
opts is an object that may specify the following properties:

mode : a string of "absolute" (default) or "relative" ,
determining how to interpret the x , y , u and v options.

x and y : the mesh point position offset, in normalized co-ordinates [0, 1]
across the object size. These are allowed to go outside the object bounds. In
relative mode these are added to the mesh point's current position.

u and v : the texture co-ordinate for the mesh point, in normalized co-
ordinates [0, 1]. These are not allowed to go outside the object bounds.
These can be omitted, or in absolute mode be set to -1, to indicate not to
change the texture co-ordinate from the default.

Note: this method returns a boolean indicating whether you must subsequently
call SetBboxChanged() to apply the change. This allows all points in the
mesh to be efficiently updated without unnecessarily repeatedly calling
SetBboxChanged() .

ZOrderMoveToTop()
ZOrderMoveToBottom()

Move the instance to the top or bottom of the Z order on its current layer.

ZOrderMoveToLayer(layer)
Revision 38 Page 194/200

Move the instance in the Z order to the given Layer. If the same layer it is
currently on is specified, the call is ignored. If the instance is moved to a new
layer, it is inserted to the top of the Z order on that layer.

ZOrderMoveAdjacentToInstance(otherInst, isOnTop)
Move the instance in the Z order to be adjacent to the Instance otherInst
(note this is passed as an Instance , not a WorldInfo). If isOnTop is
true, this instance will be moved directly on top of otherInst in the Z order;
otherwise it will be directly beneath. This method may move the instance to a
different layer, since it will move it to the same layer as otherInst is on.

Revision 38 Page 195/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

View online: https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-
reference/runtime

The Runtime class controls execution of a project. It is the equivalent of an
IProject at runtime.

The following events are fired on the runtime dispatcher, which is accessed using
runtime.Dispatcher() . For example to add an "instancedestroy" event,

use
runtime.Dispatcher().addEventListener("instancedestroy",

callback) .

"instancedestroy"
Fired when any instance is destroyed. The callback receives an event object
with an instance property referring to the Instance that was destroyed. Use
this event to ensure all references to destroyed instances are dropped.

"afterload"
Fired after the LoadFromJson call after the rest of the runtime has finished
loading. This means all objects are available and can be looked up by their UID.
For example to save a reference to an instance, save its UID to JSON, load its
UID and store it in LoadFromJson() , and then look it up with
GetInstanceByUID() in the "afterload" event.

"beforefirstlayoutstart"
"beforelayoutstart"
"afterlayoutstart"
"afterfirstlayoutstart"

Fired when starting a layout. The events fire in the order shown, with the On
start of layout trigger firing in between "beforelayoutstart" and
"afterlayoutstart" . The "beforefirstlayoutstart" and
"afterfirstlayoutstart" events only trigger for the first layout in the

project, so can be used to determine when the project starts running. In all
cases, all instances on the layout are already created and available to modify.

Revision 38 Page 196/200

https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/runtime
https://www.construct.net/make-games/manuals/addon-sdk/reference/model-interfaces/iproject
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

Dispatcher()
Return the runtime event dispatcher. This is where runtime events are fired.
For example use runtime.Dispatcher().addEventListener(...)
to listen for a runtime event.

GetAssetManager()
Return the project's AssetManager, which is used to load sub-resources.

AddLoadPromise(promise)
Only valid while the project is still loading. Add a promise that the runtime will
wait to resolve before starting the first layout. This is useful if you want to make
sure your addon loads a dynamic resource before the game starts.

Single-global plugins create their instance before loading, so this method
can be used in single-global instance constructors. Otherwise it can only
be used in the plugin or behavior constructor.

IsInWorker()
Return true if the runtime is hosted in a worker. The DOM will be unavailable.

IsPreview()
Returns true if running in Construct 3's preview mode.

GetAllObjectClasses()
Return a read-only array of all ObjectClass in the project. Note this includes
families.

GetObjectClassByName(name)
Look up an ObjectClass by a case-insensitive string of its name. Note this can
return a family.

GetObjectClassBySID(sid)
Look up an ObjectClass by a SID (Serialization ID), which is a unique number
assigned to every ObjectClass. Note this can return a family.

GetSingleGlobalObjectClassByCtor(ctor)
Look up a single-global plugin's ObjectClass by its plugin constructor function,
e.g. C3.Plugins.Facebook . Returns null if the plugin is not added to
the project.

CreateInstance(objectClass, layer, x, y)
Create and return a new Instance of an ObjectClass on the given Layer at a

Revision 38 Page 197/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/manager-classes/assetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/objectclass
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layer

position.

DestroyInstance(inst)
Destroy an Instance.

GetObjectCount()
Get the total number of instances created.

GetInstanceByUID(uid)
Look up an Instance by its UID. If none exists with the given UID, returns
null .

GetEventSheetManager()
Return the EventSheetManager that handles the event system.

GetEventStack()
Return the EventStack. This is a shorthand for
GetEventSheetManager().GetEventStack() .

GetCurrentEventStackFrame()
Return the current EventStackFrame. This is a shorthand for
GetEventSheetManager().GetCurrentEventStackFrame() .

GetCurrentEvent()
Return the current EventBlock. This is a shorthand for
GetEventSheetManager().GetCurrentEvent() .

GetCanvasClientX()
GetCanvasClientY()

Return the offset of the canvas in the document in CSS pixels.

GetCanvasCssWidth()
GetCanvasCssHeight()

Return the size of the canvas in the document in CSS pixels.

GetSampling()
Return one of "nearest" , "bilinear" or "trilinear" , reflecting
the project Sampling property.

UpdateRender()
Call to indicate that something visible has changed. Most runtime code calls
this automatically. However by default if this is not called during a tick, the

Revision 38 Page 198/200

https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventsheetmanager
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstack
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventstackframe
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/event-sheet-classes/eventblock

runtime will skip drawing a frame on the assumption nothing visible has
changed.

GetWebGLRenderer()
Return the WebGLRenderer for the runtime, which is responsible for rendering
graphics.

GetMainRunningLayout()
Return the main Layout that is currently running.

SetTimeScale(t)
GetTimeScale()

Set and get the timescale as a multiplier.

GetDt(inst)
Get the current delta-time (time the last frame took) in seconds. You can
optionally pass an Instance to get delta-time using the object's own timescale.

GetStartTime()
Get the timestamp in milliseconds at the time the runtime started up.

GetGameTime()
Get the in-game time in seconds, which can be affected by time scaling.

GetWallTime()
Get the in-game time in seconds without taking in to account time scaling (aka
the "wall clock" time).

GetTickCount()
Get the number of ticks that have elapsed so far.

GetProjectName()
GetProjectVersion()

Return a string of the name and version of the project.

GetProjectUniqueId()
Return a string representing a unique identifier for this project.

SetPixelRoundingEnabled(e)
IsPixelRoundingEnabled()

Set and get a boolean indicating whether pixel rounding is enabled.

Revision 38 Page 199/200

https://www.construct.net/make-games/manuals/addon-sdk/reference/graphics-interfaces/iwebglrenderer
https://www.construct.net/make-games/manuals/addon-sdk/runtime-reference/model-classes/layout
https://www.construct.net/en/make-games/manuals/addon-sdk/runtime-reference/object-classes/instance

InvokeDownload(url, filename)
Invoke a download of the given URL and use the provided filename. The URL
can be a blob URL.

Random()
Generate a random number in the range [0,1), which is the same range as
Math.random() . Use this method to allow the runtime control over the

random number generator, e.g. setting a fixed seed to reproduce the same
random sequence.

SetSuspended(suspend)
Pass true to suspend the runtime or false to resume it if paused. When
suspended, the entire runtime halts and stops processing events or drawing the
screen. This is done by default when the window or app goes in to the
background.

Make sure that suspend and resume calls are paired one-to-one. For
example do not suspend once but resume twice.

Revision 38 Page 200/200

	C3 ADDON SDK DOCUMENTATION
	Download
	Custom importer API sample data

	Supported SDK features
	Learning web technologies

	THE .C3ADDON FILE
	Structure of a .c3addon file
	Specifying metadata
	Setting plugin information
	Setting behavior information
	Setting effect information
	Defining actions, conditions and expressions

	ADDON METADATA
	Additional properties for effects

	CONFIGURING PLUGINS
	Plugin constants
	Updating plugin identifiers
	Updating in type.js and instance.js

	The plugin constructor
	Specifying plugin properties

	CONFIGURING BEHAVIORS
	Behavior constants
	Updating behavior identifiers
	Updating in type.js and instance.js

	The behavior constructor
	Specifying behavior properties

	CONFIGURING EFFECTS
	Effect parameters
	Writing shaders

	WEBGL SHADERS
	Adding a WebGL 2 shader variant
	Providing a WebGL 2 shader variant
	Writing WebGL 2 shaders
	Using WebGL 1 extensions
	Testing

	Shader uniforms
	Useful shader calculations

	WEBGPU SHADERS
	Providing a WGSL shader variant
	Writing WGSL shaders
	Construct-specific placeholders
	Utility functions
	Provided by %%FRAGMENTINPUT_STRUCT%%
	Provided by %%C3PARAMS_STRUCT%%
	Provided by %%C3_UTILITY_FUNCTIONS%%

	Useful shader calculations
	Compatibility differences with WebGL shaders

	DEFINING ACTIONS, CONDITIONS AND EXPRESSIONS
	JSON schema
	Never delete ACES after release
	Categories
	Common properties of ACE definitions
	Condition definitions
	Action definitions
	Expression definitions
	Parameter definitions
	Language strings

	THE LANGUAGE FILE
	Overall structure
	Required fields
	Strings for properties/parameters
	Combo properties
	Link properties

	Category names
	ACE strings
	Action and condition strings
	Expression strings
	Parameters
	Example

	RUNTIME SCRIPTS
	Runtime documentation
	C3 runtime API calls
	DOM calls in the C3 runtime
	Using a DOM script

	Supporting the debugger
	Editing properties
	Translation
	Sample code

	TIMELINE INTEGRATION
	Plugins
	Plugin that need layout view preview updates
	Behaviors
	Effects

	SCRIPT MINIFICATION
	WRAPPER EXTENSIONS
	Messaging
	One-off messages
	Async messages

	Suggested architecture
	Strings on Windows

	Additional examples

	PORTING CONSTRUCT 2 PLUGINS/BEHAVIORS
	THEME ADDONS
	Tips for developing themes
	Using themes

	ENABLING DEVELOPER MODE
	TESTING ADDONS IN DEVELOPER MODE
	Step 1: enable Developer Mode
	Step 2: start a local web server
	Step 3: update addon.json to include file list
	Step 4: install the developer mode addon
	Step 5: develop the addon

	SAFE MODE
	IBEHAVIORINSTANCEBASE INTERFACE
	Properties
	Methods

	IINSTANCEBASE INTERFACE
	Properties
	Methods

	IWORLDINSTANCEBASE INTERFACE
	Methods

	COLOR INTERFACE
	Constructor
	Methods

	QUAD INTERFACE
	Constructor
	Methods

	RECT INTERFACE
	Constructor
	Methods

	IDRAWPARAMS INTERFACE
	Methods

	IWEBGLRENDERER INTERFACE
	Renderer state
	Methods

	IWEBGLTEXT INTERFACE
	Methods

	IWEBGLTEXTURE INTERFACE
	Methods

	ILANG INTERFACE
	Methods

	IZIPFILE INTERFACE
	Methods

	IZIPFILEENTRY INTERFACE
	IEVENTBLOCK INTERFACE
	Creating an event block
	Finding condition and action IDs
	Methods

	IEVENTPARENTROW INTERFACE
	Methods

	IEVENTSHEET INTERFACE
	Methods

	ILAYER INTERFACE
	Methods

	ILAYOUT INTERFACE
	Methods

	IPROJECT INTERFACE
	Methods

	IPROJECTFILE INTERFACE
	Methods

	IANIMATION INTERFACE
	Methods

	IANIMATIONFRAME INTERFACE
	Methods

	IBEHAVIORINSTANCE INTERFACE
	Methods

	IBEHAVIORTYPE INTERFACE
	Methods

	ICOLLISIONPOLY INTERFACE
	Methods

	ICONTAINER INTERFACE
	Methods

	IFAMILY INTERFACE
	Methods

	IIMAGEPOINT INTERFACE
	Methods

	IOBJECTCLASS INTERFACE
	Methods

	IOBJECTINSTANCE INTERFACE
	Methods

	IOBJECTTYPE INTERFACE
	Methods

	IWORLDINSTANCE INTERFACE
	Methods

	ILAYOUTVIEW INTERFACE
	Methods

	UTIL INTERFACE
	Methods

	FINDING ADDON IDS
	Listing addon IDs
	Listing ACE IDs

	IBEHAVIORINFO INTERFACE
	Methods

	IPLUGININFO INTERFACE
	Methods

	PLUGINPROPERTY CLASS
	Constructor
	The options object

	SPECIFYING DEPENDENCIES
	File dependencies
	Cordova plugin dependencies
	Cordova resource file dependencies
	Remote script dependencies

	ARRAY APIS
	BINARY DATA APIS
	DICTIONARY APIS
	DRAWING CANVAS APIS
	Drawing canvas instance APIs

	FACEBOOK APIS
	Getting the Facebook instance
	Available APIs

	FUNCTION APIS
	TILEMAP APIS
	Tile numbers
	Tile flags

	Tilemap instance APIs

	DOMELEMENTHANDLER INTERFACE
	Methods

	DOMHANDLER INTERFACE
	Methods

	SDKBEHAVIORBASE INTERFACE
	Properties
	Methods

	SDKBEHAVIORINSTANCE INTERFACE
	Properties
	Methods

	SDKBEHAVIORTYPEBASE
	Properties
	Methods

	SDKDOMINSTANCEBASE INTERFACE
	Methods

	SDKDOMPLUGINBASE INTERFACE
	Methods

	SDKINSTANCEBASE INTERFACE
	Properties
	Methods
	Wrapper extension methods

	SDKPLUGINBASE INTERFACE
	Properties
	Methods

	SDKTYPEBASE INTERFACE
	Properties
	Methods

	SDKWORLDINSTANCEBASE INTERFACE
	Properties
	Methods

	EVENTBLOCK
	Retriggering events
	Methods

	EVENTSHEETMANAGER
	Methods

	EVENTSTACK
	Methods

	EVENTSTACKFRAME
	Methods

	ASSETMANAGER
	Methods

	LAYER
	Methods

	LAYOUT
	Methods

	BEHAVIORINSTANCE
	Methods

	BEHAVIORTYPE
	Methods

	CONTAINER
	Methods

	INSTANCE
	General methods
	Scene graph methods

	OBJECTCLASS
	Methods

	WORLDINFO
	Modifying geometric properties
	General methods
	Collision methods
	Mesh distortion methods
	Z order methods

	RUNTIME
	Events
	Methods

