
CONSTRUCT 2
JAVASCRIPT SDK
DOCUMENTATION

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk

Developers can extend Construct 2 with their own
plugins and behaviors using the Javascript SDK. This
manual documents how to use the SDK and the
features Construct 2 exposes through the plugin
interface.

This is a technical manual for javascript programmers.
If you're looking for help on how to use Construct 2,
please see the Construct 2 manual.

Familiarity with Construct 2 is recommended before
developing with the SDK. The terminology and
functions may be hard to understand otherwise. The
beginner's guide is a good place for developers to start
learning how Construct 2 works.

Download the SDK template to get started. The
download includes a template plugin, behavior and
effect which serves as a useful starting point for
developing your own Construct 2 addons.

Revision 2 Page 1/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk
http://www.scirra.com/manual/1/construct-2
http://www.scirra.com/tutorials/37/beginners-guide-to-construct-2
https://downloads.scirra.com/c2-addon-sdk.zip

Uses for the Javascript SDK
The Javascript SDK allows you to integrate your own
Javascript code in to your Construct 2 games. This is
especially useful for integrating Construct 2 games
with your own or third-party web-based services or
backends, such as your own login and high-score
systems, or to integrate a third-party advertising or
payment solution. In addition to that, you can create
your own new features in Construct 2 tailored to your
specific game by writing some of the logic in
Javascript, or expose brand new or platform-specific
features to the Construct 2 event system.

Developer mode for previewing
By default Construct 2 only loads runtime scripts when
previewing a project for the first time. Closing and
reopening a project will cause Construct 2 to re-load
the runtime scripts for all plugins. However, you can
also set Construct 2 in to 'developer mode' which
causes it to re-load plugin runtime scripts every time
you press preview. This can save time during
development since you can edit scripts while keeping a
project open. To set developer mode, run regedit and
open the following registry key (create it if it doesn't
exist):

HKEY_CURRENT_USER\Software\Scirra\Construct2\html5

and add the key devmode and set it to 1 (DWORD
Revision 2 Page 2/92

value). Note this does not affect edittime scripts - these
are only ever loaded the first time the editor starts up,
so to reload them you must still close and reopen
Construct 2.

Revision 2 Page 3/92

JAVASCRIPT SDK
FOR

CONSTRUCT 2
View online: https://www.construct.net/en/construct-

2/manuals/construct-2-javascript-sdk/sdk-documentation

This section covers what you need to know about
using the Javascript SDK for Construct 2.

Revision 2 Page 4/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation

OVERVIEW OF
THE CONSTRUCT

2 SDK
View online: https://www.construct.net/en/construct-

2/manuals/construct-2-javascript-sdk/sdk-
documentation/overview

Third party developers can write their own plugins and
behaviors for Construct 2 in javascript. Plugins have
two parts: the editor side (defining the plugin settings,
actions and conditions, etc) and the runtime side. The
editor side is interpreted by Google's V8 javascript
engine built in to the HTML5 exporter. The runtime
side runs in the browser. Note the implications: you
cannot use browser features in the edittime, and you
should not use browser-specific features in the
runtime.

Javascript is not Java! Java is an application
programming language developed by Sun (which,
confusingly, can also run in browsers via a plugin).
Javascript is the native programming language for web
pages in browsers. Make sure you're clear on the
difference.

You do not need any special tools to develop plugins or
behaviors. All you need is a text editor and a little
javascript knowledge. A good text editor with syntax

Revision 2 Page 5/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/overview

highlighting for javascript is Notepad++, which is
favoured by Scirra developers.

This guide will not teach you javascript. Generally, we
ask that you do not post questions about the javascript
language itself to the Scirra forums. There are many
other better places to ask on the web. Questions about
the SDK are always welcome, though. Some useful
resources for javascript are:

Mozilla's Javascript Guide A complete guide to
javascript. This might be a good starting point if you
are new to programming.

StackOverflow An excellent Q&A website. Also a
good place to search to see if your question has
already been asked and answered.

Javascript Garden Guide to the unusual parts of
javascript. Very useful if you have experience with a
different programming language but are new to
javascript.

Mozilla Developer Network (MDN) An excellent
reference for HTML, javascript, and more. A very
useful place to look up features for the browser side
of the plugin.

Overview of plugins and
behaviors
Before developing a plugin or behavior, you should be
familiar with the usage of Construct 2, or the
terminology and functionality will be difficult to

Revision 2 Page 6/92

https://www.construct.net/out?u=http%253a%252f%252fnotepad-plus-plus.org%252f
https://www.construct.net/out?u=https%253a%252f%252fdeveloper.mozilla.org%252fen%252fJavaScript%252fGuide
https://www.construct.net/out?u=http%253a%252f%252fwww.stackoverflow.com%252f
https://www.construct.net/out?u=http%253a%252f%252fbonsaiden.github.com%252fJavaScript-Garden%252f
https://www.construct.net/out?u=https%253a%252f%252fdeveloper.mozilla.org%252f

understand. The Construct 2 beginner's guide is a
good place to start.

As you probably know, plugins define new objects in
the editor, and behaviors add functionality other
objects. Plugins and behaviors are surprisingly similar.
Behaviors are essentially also plugins, but with the aim
of affecting another object. The SDKs for both are very
similar, so this guide will simply describe how plugins
are made, and note where behaviors are different.

Plugin scripts
Plugin and behavior scripts are located at

<install path>\exporters\html5\plugins
<install path>\exporters\html5\behaviors

Each plugin has its own folder. Plugins consist of four
files:

common.js - this is prepended to both edittime.js
and runtime.js in case you have code common to
both.

edittime.js - defines the plugin for the editor,
including all its actions, conditions and expressions.

runtime.js - defines the plugin functionality in the
browser.

PluginIcon.ico - the editor loads this icon to
represent the plugin.

Revision 2 Page 7/92

https://www.scirra.com/tutorials/37/beginners-guide-to-construct-2

A template for both a plugin and behavior can be
downloaded here. You can copy these to a folder in the
above directories to provide a skeleton starting point
for your plugin or behavior.

Plugins work identically in the 32-bit and 64-bit
versions of Construct 2.

All the "built-in" plugins and behaviors are also written
this way. It would be useful to read their scripts - also
in the above directories - to see how their features are
implemented. You can learn a lot from this.

All the scripts for the entire javascript runtime are also
located in <install path>\exporters\html5 . They are
perfectly readable and commented (not minified). This
is a great way to learn even more, but may make for
some heavy reading. You may find these three scripts
particularly relevant, though:

common_prelude.js - prepended to both edittime
scripts and runtime scripts.

edittime_prelude.js - prepended only to edittime
scripts.

preview_prelude.js - prepended only to runtime
scripts.

Remember that javascript has no way of limiting
access to objects. This means you can alter any part
of the runtime at any time. You should assume this is a
bad idea (with undefined consequences) unless the

Revision 2 Page 8/92

https://www.scirra.com/downloads/javascript-sdk-template.zip

object properties have been explicitly documented with
valid ways of accessing the property. The runtime is
complex, and any undocumented changes you make
may break projects in subtle ways or have other
unintended consequences. Keep the reference handy!

Good luck!
Developing your own plugins and behaviors is
relatively straightforward and can be fun! The following
guide pages describe plugin development in more
detail. If you have any questions about the SDK feel
free to ask on the forum, but please remember we ask
that you look to other resources for questions on the
javascript language itself.

Revision 2 Page 9/92

PLUGIN
SETTINGS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-

documentation/plugin-settings

At the top of edittime.js is the function
GetPluginSettings() which tells Construct 2 some
important information about the plugin or behavior.
Here is the settings function for Sprite:

 function GetPluginSettings()
 {
 return {
 "name": "Sprite",
 "id": "Sprite",
 "version": "1.0",
 "description": "An animated object that is the building blo
ck of most projects.",
 "author": "Scirra",
 "help url": "http://www.scirra.com",
 "category": "General",
 "type": "world",
 "rotatable": true,
 "flags": pf_animations | pf_position_aces | pf_size_aces |
 pf_angle_aces | pf_appearance_aces
 };
 };

Revision 2 Page 10/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/plugin-settings

Each field is as follows:

name
This is the name of your plugin as it appears in the
dialogs in Construct 2. Note it is separate to the id.

id

This is a string identifying your plugin. All plugins
must have a unique id. The id, not the name, is
saved in the project XML to identify a plugin. This
means you can safely change the plugin's name
without breaking existing projects. However, if you
change the id, Construct 2 will consider it to be a
different kind of plugin, and all existing projects
using the plugin will no longer load. Therefore, you
should choose an appropriate id when starting
development of a new plugin, and never change it.

version
This is a float in the format x.y which identifies the
version of your plugin. You should keep this
updated whenever you make a new release.
Construct 2 uses it to verify projects are compatible
when opening. For example, Construct 2 will show a
warning if a project was saved with version 2 of a
plugin, but is opened with version 1 of the plugin
installed.

description
Revision 2 Page 11/92

Some text describing the purpose of the plugin. This
is displayed in the dialog when choosing a plugin.

author

You or your organisation.

help url
When the user clicks 'help' in the editor for your
plugin, this is the URL they are sent to.

category
In the editor dialogs, all plugins and behaviors are
grouped in to categories. This specifies which
category your plugin belongs to. It is advisable to
use an existing category whenever relevant, but you
can set this to anything you like and Construct 2 will
put it in its own category. The category is case
sensitive.

type (not used in behaviors)
This can take one of the following values,
depending on what kind of plugin you want to make:

"world" The plugin appears in the layout, and
therefore draws something to the screen (e.g.
Sprite, Tiled Background, Text).

Revision 2 Page 12/92

"object" The plugin does not appear in the layout,
and therefore does not draw anything (e.g.
Array). The draw methods will not be called, and
the user cannot place the object in the layout -
they must access it via the Object Bar or Project
Bar.

rotatable (not used in behaviors)
When the type is "object", this setting is ignored.
When the type is "world", this specifies if the object
has an angle. The user may also rotate the object in
the layout editor. For example, Sprite is rotatable,
but Text is not.

flags
Flags describing additional settings. These can be
combined with bitwise OR (e.g. pf_position_aces |
pf_size_aces), or set to 0 for no flags. The following
flags are available for plugins:

pf_singleglobal Specifies a single global type of
plugin. When inserted, these are available
project-wide, and there is only ever one instance
of the object (additional instances cannot be
created). This is ideal for input objects or other
non-object based features, e.g. Mouse,
Keyboard, Audio. pf_singleglobal cannot be used

Revision 2 Page 13/92

with "world" type plugins.

pf_texture The plugin uses a single texture. Tiled
Background uses this flag. Construct 2 will open
the image editor when inserting the plugin.

pf_animations The plugin uses Construct 2's
animation system. Sprite uses this flag.
Construct 2 will open the animations editor when
inserting the plugin.

pf_tiling Only valid when pf_texture or
pf_animations is also used. Specifies that the
plugin will tile its texture. This alters the image
editor's functionality to better suit tiled textures.
Tiled Background uses this flag.

pf_position_aces Only valid with "world" type
plugins. Automatically inherit actions, conditions
and expressions for the object position (such as
Set X and Set Y).

pf_size_aces Only valid with "world" type plugins.
Automatically inherit actions, conditions and
expressions for the object size (such as Set
Width and Set Height).

pf_appearance_aces Only valid with "world" type
plugins. Automatically inherit actions, conditions

Revision 2 Page 14/92

and expressions for the object appearance (such
as Set Visible and Set Opacity).

pf_zorder_aces Only valid with "world" type
plugins. Automatically inherit actions, conditions
and expressions for the object Z order (such as
Set Layer and Move To Front).

The following flags are available for behaviors:

bf_onlyone The behavior can only be added to an
object once. Normally the user can add a
behavior as many times as they like, but this flag
prevents them from adding it again. For example,
the Solid behavior uses this flag, because it does
not make sense for an object to have two Solid
behaviors.

dependency
This one isn't listed above, but if you need external
files bundled with your plugin (e.g. a javascript
library) you can specify one or more dependency
files with:

dependency": "file1.js;file2.js;file3.html

Revision 2 Page 15/92

You must provide these files in the plugin's folder.
Construct 2 will then copy them out when exporting
the project, and make them available on the preview
server for testing. Construct 2 will also automatically
insert a script tag in to the HTML page before the
runtime for any files ending in .js, so you do not
need to worry about loading them yourself.

Changes after publishing
You should not change the id, type, rotatable or flags
settings after releasing your plugin or behavior (other
than to add new 'aces' flags), as this will break all
existing projects using it. All the other settings can be
changed at any time.

Revision 2 Page 16/92

ACTIONS,
CONDITIONS

AND
EXPRESSIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-
documentation/actions-conditions-expressi

These are often called ACEs for short, or ACE to refer
to 'an action, condition or expression'. In your
edittime.js, you can specify any ACEs your plugin or
behavior uses. Remember behavior ACEs are merged
with the object's ACEs in the editor dialog.

Parameters
If your ACE takes parameters, you must first add them
using the following functions. The name and
description parameters are required for all parameters.
The name appears as a label to the left of the
parameter. The description appears at the top of the
dialog when the parameter has focus. The description
is actualy very important: you can save the user a trip
to the manual by including some vital information, like
the units being used (e.g. pixels vs. texture
coordinates). Try to include anything the user might

Revision 2 Page 17/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/actions-conditions-expressi

wonder about the parameter in the description.
Hopefully you'll have found descriptions useful in using
Construct 2 - try to do the same with your parameter
descriptions!

Some parameters also take an initial_str. This is an
optional string (always a string, even for number
parameters) that is pasted in to the parameter as a
default. Try to set a common or useful default, e.g.
"100" for a percentage. This can also help save the
user time and also indicate what a reasonable entry is.
Never let the default give a syntax error! If not
provided, it is 0 for number/any type parameters, and ""
(an empty string) for strings.

All parameters also take an optional id number
parameter at the end. This should not normally be
used, but can allow you to modify parameters after
releasing your plugin. All parameter ids are by default
their index, and you can maintain compatibility with
existing projects by explicitly assigning ids to match old
parameters to new ones.

Parameters are all passed to the corresponding
runtime function as ordinary javascript values. They
are passed in the same order as they are added with
these functions.

AddNumberParam(name, description, initial_str);
A typed number parameter, which accepts integers
or floats.

Revision 2 Page 18/92

AddStringParam(name, description, initial_str);
A typed string parameter.

AddAnyTypeParam(name, description,initial_str);
A typed parameter that accepts either integers,
floats or strings. Wherever possible, prefer number
or string parameters, since they force the correct
type to be entered, reducing the chance of a
mistake. The runtime function must check the
actual type passed using javascript's typeof
operator.

AddCmpParam(name, description);
A combo box parameter with the following standard
items: Equal, Not equal, Less, Less or equal,
Greater, Greater or equal.

AddComboParamOption(text);
AddComboParam(name, description, initial);

A combo box parameter with custom items. Call
AddComboParamOption once per item before
AddComboParam to set the items. Note initial
specifies the integer index of the default item, rather
than a string like other parameters. The runtime
function receives the integer index of the chosen
item.

AddObjectParam(name, description);
A button that allows the user to pick an object type
in the project. The runtime function receives a

Revision 2 Page 19/92

reference to the object type in the runtime.
Construct 2 may also pass null for this parameter,
so always check the parameter is not null before
using it.

AddLayerParam(name, description);
A typed parameter where the user can enter a
layer's name (string), or number (0-based index).
The runtime receives a reference to the layer in the
runtime. Construct 2 may also pass null for this
parameter so always check the parameter is valid
before using it.

AddLayoutParam(name, description);
A combo box with all the layouts in the project. The
runtime receives a reference to the layout in the
runtime. Construct 2 may also pass null for this
parameter so always check the parameter is valid
before using it.

AddKeybParam(name, description);
A button the user can click and hit a key. The
runtime receives the virtual key (VK) code.

AddAnimationParam(name, description,initial_str);
A typed string parameter where the user can enter
the name of one of the object's animations. Only
valid when the plugin specifies pf_animations.
Construct 2 may also pass null for this parameter so
always check the parameter is not null before using

Revision 2 Page 20/92

it.

AddAudioFileParam(name, description);
A combo box with all the audio files in the project.
The runtime receives a string of the filename without
the extension. For example, if MyFile.ogg is
chosen, then "MyFile" is passed. If the browser
supports Vorbis, you should append .ogg; if not,
append .m4a. The .m4a file is not guaranteed to
exist: Construct 2 considers .ogg files to be the
project's audio files, and .m4a are only used as a
backup for .ogg files if the browser does not support
Vorbis. However, the user may not have created a
.m4a backup file.

AddCondition(id, flags, list_name, category,display_string, description, script_name);
id

A number uniquely identifying this condition. This is
saved to the project XML, so you may change the
rest of the parameters after releasing your plugin,
but not the id.

flags
This may be zero for no flags, or a combination of
the following values combined with bitwise OR (|):

cf_trigger

A triggered condition. Events with triggers are not
evaluated every tick; instead, they are run by the

Revision 2 Page 21/92

runtime.trigger() function. There are some limitations
on triggers: an event cannot contain two triggered
conditions, and a trigger is always the first condition.

cf_fake_trigger

Appears and works exactly like a trigger in the
editor, but is passively evaluated every tick in the
runtime like an ordinary condition. You cannot
specify both cf_trigger and cf_fake_trigger. Fake
triggers are useful for conditions like "Every X
milliseconds", where the condition should work like a
trigger in the editor, but it is most convenient to
implement it as an ordinary condition in the runtime.
Fake triggers cannot be triggered by
runtime.trigger(): they are identical to ordinary
events in the runtime. This flag only affects the
editor.

cf_static

Normally, the condition function at runtime is called
once per instance, to 'filter' the picked objects. Static
conditions (those specifying this flag) only have
their function called once, no matter how many
instances there are. You must then perform any
picking yourself in the function. For example, 'Pick
random instance' would be most conveniently
implemented as a static condition.

Revision 2 Page 22/92

cf_not_invertible

Prevents the user inverting the condition. This is
useful if the inverted condition does not make
sense, e.g. 'Pick random instance'.

cf_deprecated

Hides the condition from the dialog. If you wish to
replace a condition in your plugin with different
features, you must not remove it entirely: this will
break all existing projects using it. Instead, marking
it deprecated prevents any new projects from using
it, while letting old projects load correctly and
continue using it.

cf_incompatible_with_triggers

Prevents the user adding the condition to an event
with a trigger in it. This is not generally useful for
plugins - the runtime uses it for certain special
conditions like 'trigger once'.

cf_looping

Shows a looping icon next to the condition. This
does not affect the functionality of the condition in
any way - it is purely cosmetic. Construct 2 will
assume your condition function is implemented as a
looping condition.

Revision 2 Page 23/92

list_name
This is the name of the condition in the Add
condition dialog, e.g. "Compare X".

category
The category the condition belongs to in the dialog.
This may be empty for behavior conditions, where
the category name will be the name of the behavior.
It must not be empty for plugin conditions.

display_string
The string displayed in the event sheet view. {0},
{1}, {2} etc. are substituted with the corresponding
parameter. These can each only appear once in the
display string. You can also use bold and italic
HTML tags (but no other HTML is valid). Try to
follow conventions in the rest of Construct 2's
plugins and behaviors when using bold and italic.

description
A string appearing at the top of the Add condition
dialog when the user has selected the condition. As
with parameter descriptions, try to be as helpful as
possible for the user with this.

script_name
The name of the condition function in the runtime
script. For example, if it is "MyCondition", the
runtime function must be cnds.MyCondition. Since
dot syntax must be used for properties (see Google

Revision 2 Page 24/92

Closure Compiler compatibility), make sure this
does not contain any spaces etc.

Adding conditions
By convention, the plugin's conditions are listed first.
Once any parameters have been added using the
above functions, the following function adds a
condition:

AddCondition(id, flags, list_name, category,display_string, description, script_name);
id

A number uniquely identifying this condition. This is
saved to the project XML, so you may change the
rest of the parameters after releasing your plugin,
but not the id.

flags
This may be zero for no flags, or a combination of
the following values combined with bitwise OR (|):

cf_trigger

A triggered condition. Events with triggers are not
evaluated every tick; instead, they are run by the
runtime.trigger() function. There are some limitations
on triggers: an event cannot contain two triggered
conditions, and a trigger is always the first condition.

cf_fake_trigger
Revision 2 Page 25/92

Appears and works exactly like a trigger in the
editor, but is passively evaluated every tick in the
runtime like an ordinary condition. You cannot
specify both cf_trigger and cf_fake_trigger. Fake
triggers are useful for conditions like "Every X
milliseconds", where the condition should work like a
trigger in the editor, but it is most convenient to
implement it as an ordinary condition in the runtime.
Fake triggers cannot be triggered by
runtime.trigger(): they are identical to ordinary
events in the runtime. This flag only affects the
editor.

cf_static

Normally, the condition function at runtime is called
once per instance, to 'filter' the picked objects. Static
conditions (those specifying this flag) only have
their function called once, no matter how many
instances there are. You must then perform any
picking yourself in the function. For example, 'Pick
random instance' would be most conveniently
implemented as a static condition.

cf_not_invertible

Prevents the user inverting the condition. This is
useful if the inverted condition does not make
sense, e.g. 'Pick random instance'.

Revision 2 Page 26/92

cf_deprecated

Hides the condition from the dialog. If you wish to
replace a condition in your plugin with different
features, you must not remove it entirely: this will
break all existing projects using it. Instead, marking
it deprecated prevents any new projects from using
it, while letting old projects load correctly and
continue using it.

cf_incompatible_with_triggers

Prevents the user adding the condition to an event
with a trigger in it. This is not generally useful for
plugins - the runtime uses it for certain special
conditions like 'trigger once'.

cf_looping

Shows a looping icon next to the condition. This
does not affect the functionality of the condition in
any way - it is purely cosmetic. Construct 2 will
assume your condition function is implemented as a
looping condition.

list_name
This is the name of the condition in the Add
condition dialog, e.g. "Compare X".

category
Revision 2 Page 27/92

The category the condition belongs to in the dialog.
This may be empty for behavior conditions, where
the category name will be the name of the behavior.
It must not be empty for plugin conditions.

display_string
The string displayed in the event sheet view. {0},
{1}, {2} etc. are substituted with the corresponding
parameter. These can each only appear once in the
display string. You can also use bold and italic
HTML tags (but no other HTML is valid). Try to
follow conventions in the rest of Construct 2's
plugins and behaviors when using bold and italic.

description
A string appearing at the top of the Add condition
dialog when the user has selected the condition. As
with parameter descriptions, try to be as helpful as
possible for the user with this.

script_name
The name of the condition function in the runtime
script. For example, if it is "MyCondition", the
runtime function must be cnds.MyCondition. Since
dot syntax must be used for properties (see Google
Closure Compiler compatibility), make sure this
does not contain any spaces etc.

Adding actions

Revision 2 Page 28/92

By convention, the plugin's actions are listed second.
Once any parameters have been added, the following
function adds an action:

AddAction(id, flags, list_name, category,display_string, description, script_name);
id

A number uniquely identifying this action. This is
saved to the project XML, so you may change the
rest of the parameters after releasing your plugin,
but not the id.

flags
This may be zero for no flags, or:

af_deprecated

Hides the action from the dialog. If you wish to
replace an action in your plugin with different
features, you must not remove it entirely: this will
break all existing projects using it. Instead, marking
it deprecated prevents any new projects from using
it, while letting old projects load correctly and
continue using it.

list_name
This is the name of the action in the Add action
dialog, e.g. "Set X".

category
The category the action belongs to in the dialog.

Revision 2 Page 29/92

This may be empty for behavior actions, where the
category name will be the name of the behavior. It
must not be empty for plugin actions.

display_string
The string displayed in the event sheet view. {0},
{1}, {2} etc. are substituted with the corresponding
parameter. These can each only appear once in the
display string. You can also use bold and italic
HTML tags (but no other HTML is valid). Try to
follow conventions in the rest of Construct 2's
plugins and behaviors when using bold and italic.

description
A string appearing at the top of the Add action
dialog when the user has selected the condition. As
with parameter descriptions, try to be as helpful as
possible for the user with this.

script_name
The name of the action function in the runtime
script. For example, if it is "MyAction", the runtime
function must be acts.MyAction. Since dot syntax
must be used for properties (see Google Closure
Compiler compatibility), make sure this does not
contain any spaces etc.

Adding expressions
By convention, the plugin's expressions are listed third.
Expressions can only use number, string or 'any type'

Revision 2 Page 30/92

parameters, since expression parameters are all
entered as text. Once any parameters have been
added, the following function adds an expression:

AddExpression(id, flags, list_name, category,expression_name, description);
id

A number uniquely identifying this action. This is
saved to the project XML. After releasing your
plugin you cannot change the id or
expression_name, but the other parameters can be
changed.

flags
This may not be zero - at least one flag specifying
the return type must be set. The available flags are:

ef_return_number

The expression returns either an integer or float,
using the runtime ret.set_int() or ret.set_float()
functions.

ef_return_string

The expression returns a string, using the runtime
ret.set_string() function.

ef_return_any

The expression can return either an integer, float or
Revision 2 Page 31/92

string. Either ef_return_number or ef_return_string
should be preferred where possible, since Construct
2's expression parser cannot verify the correct types
are used when ef_return_any expressions are
involved.

ef_variadic_parameters

Construct 2 will allow the expression to be used with
additional 'any type' parameters past the end of
those specified. Any parameters that are specified
will still be required and type checked. If no
parameters are specified, the expression can be
used with any number of parameters at all.

ef_deprecated

Hides the expression from the object panel and
autocomplete, and raises a syntax error if the user
tries to type it in. If you wish to replace an
expression in your plugin with different features, you
must not remove it entirely: this will break all existing
projects using it. Instead, marking it deprecated
prevents any new projects from using it, while letting
old projects load correctly and continue using it.

list_name
This is intended to be equivalent to the condition
and action list_name. However, in the current
release of Construct 2, it is not used. It may be

Revision 2 Page 32/92

displayed in a future release though, so it should still
be set appropriately.

category
The category the expression belongs to in the
dialog. This may be empty for behavior expressions,
where the category name will be the name of the
behavior. It must not be empty for plugin
expressions.

expression_name
The name of the expression. This follows the dot in
the expression syntax. For plugins, the expression
is used as MyObject.expression_name. For
behaviors, it is used as
MyObject.MyBehavior.expression_name. It also
serves as the script name: if it is "MyExpression",
the runtime function must be exps.MyExpression.
Since dot syntax must be used for properties (see
Google Closure Compiler compatibility), make sure
this does not contain any spaces etc.

description
The description that appears next to the expression
in the Expressions Panel. As with parameter
descriptions, try to be as helpful as possible for the
user with this.

Finishing up
Once all your ACEs are added, call the following

Revision 2 Page 33/92

function:

ACESDone();
You cannot add any more ACEs after this line.

Implementing the runtime
functions
Each ACE must have a corresponding function in
runtime.js. These functions must be added to the
prototypes of the Cnds, Acts and Exps objects.
Despite the fact the functions are added to an empty
object's prototype, they are invoked with this
referencing an instance of your plugin.

Conditions are declared like so:

 Cnds.prototype.ScriptName = function (params)
 {
 return true;
 };

params is a list of function parameters corresponding
to any parameters to added to the condition. It can be
empty (i.e. function ()) if no parameters were added.
The function must return true if the condition was true
for this instance, or false if not.

Actions are declared like so:

 Acts.prototype.ScriptName = function (params)

Revision 2 Page 34/92

 {
 // do something
 };

params is the same as with conditions. Actions do not
need to return anything.

Expressions are declared like so:

 Exps.prototype.ExpressionName = function(ret[, params])
 {
 ret.set_int(0);
 // or:
 // ret.set_float
 // ret.set_string
 // ret.set_any
 };

Note that the expression name is used here rather
than a script name. ret must always be the first
parameter, and is required even if the expression has
no parameters. Any parameters the expression uses
must follow ret. The expression's return value must not
be returned by returning from the javascript function
(e.g. return 0;) - values returned this way are ignored.
Instead, call ret.set_int, ret.set_float, ret.set_string or
ret.set_any to return a value from the expression.
ret.set_any determines the type of the javascript value
passed to it, and sets the return type based on that.

Remember the ret parameter is required and must be

Revision 2 Page 35/92

used to return values from the expression! This is
different to writing ordinary javascript functions.

Revision 2 Page 36/92

PROPERTIES
View online: https://www.construct.net/en/construct-

2/manuals/construct-2-javascript-sdk/sdk-
documentation/properties

Your plugin properties specify what appears in the
properties bar when your plugin is selected. Construct
2 adds its own properties for most plugins. However,
you can specify custom properties which are shown at
the bottom of the properties bar. For behaviors,
properties appear in a sub-category of the behaviors
category.

Properties are specified in edittime.js. By convention,
they follow the ACE definitions.

 var property_list = [
 // a list of cr.Property objects
];

Each property should be a new cr.Property object:

new cr.Property(type, name, initial_value,description[, param, readonly])
type

One of the following property types:

ept_integer

Revision 2 Page 37/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/properties

An integer number. Floating point numbers cannot
be entered to integer properties.

ept_float

A floating point number.

ept_text

A text property.

ept_color

A color selector. The runtime receives an rgb string,
e.g. "rgb(255,255,255)".

ept_font

A font selector. The runtime receives a string
formatted "facename,size,weight,italic".

ept_combo

A combo box property. Items are specified in the
param parameter of cr.Property as a pipe-separated
string, e.g. "One|Two|Three".

ept_link

Revision 2 Page 38/92

A link property. Links do not have any associated
value nor are they passed to the runtime; they
simply allow you to do something in
OnPropertyChanged() when it is clicked.

ept_section

Creates a new header in the properties bar. Useful
for splitting up long property lists in to groups, like
with the Particles object.

name
The name of the property.

initial_value
The initial value of the property. This must be a
javascript number for integer and float properties; a
javascript string for text properties; an RGB value
for color properties (e.g. cr.RGB(255, 255, 255)); a
string in the format "Facename,size" for font
properties; the string of the default item to select for
combo properties; and the link text for link
properties.

description
The text that appears as a tip at the bottom of the
properties bar. Try to keep it brief, but as helpful as
possible to the user. Any opportunity to save the
user a trip to the manual is worth taking.

Revision 2 Page 39/92

param (optional)
For combo properties, a pipe-separated string
specifying the combo box items, e.g.
"One|Two|Three". For link parameters, this can be
one of the following values:

"firstonly"

By default, clicking a link calls
OnPropertyChanged() once for each of the selected
instances. If you are performing an action on the
object type, such as invoking the image editor,
specifying "firstonly" calls OnPropertyChanged()
once only for the first selected instance rather than
repeatedly.

"worldundo"

Create a 'world' undo point before calling
OnPropertyChanged(). This allows undoing any
change in position, size or angle. Sprite uses this so
'Make 1:1' can be undone.

readonly (optional)
Set to true to make the property read-only
(uneditable).

Getting property values at
runtime

Revision 2 Page 40/92

In your instance's onCreate() function in runtime.js,
properties are available via the array this.properties[].
This is an array of the property values. The values are
in the same order as the properties were added,
excluding link properties. For example, if you have two
link properties followed by three integer properties,
this.properties only has three elements (the three
integer properties in the order they were added).

Revision 2 Page 41/92

THE EDIT-TIME
View online: https://www.construct.net/en/construct-

2/manuals/construct-2-javascript-sdk/sdk-documentation/edit-
time

You cannot use browser features in the edit-time, since
the edittime.js script is interpreted by Google's V8
javascript engine rather than a real browser. However,
Construct 2 exposes some editor features in the
edittime script. The functions and objects you can use
are documented here.

Global functions

alert(msg)
Bring up a message box with the message.
Generally only useful for testing or errors.

assert2(cnd, msg)
Assert that cnd is true, else cause a check failure
with msg. This is only used in checked builds.
However, it is useful for testing and diagnostics.

#Edittime callbacks#

CreateIDEObjectType()
Called whenever Construct 2 needs to create a new
object type from your plugin.

Revision 2 Page 42/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/edit-time

IDEObjectType()
The class representing an object type in the editor.

IDEObjectType.CreateInstance()
Called whenever Construct 2 needs to create a new
instance from your plugin.

IDEInstance()
The class representing an instance in the editor.

IDEInstance.OnInserted()
Called whenever the user manually inserts a new
instance in to the project. Typically this is done via
the Insert Object dialog.

IDEInstance.OnDoubleClicked()
Called when an instance is double-clicked in the
layout. You may want to invoke the texture or
animation editor here.

IDEInstance.OnPropertyChanged(name)
Called just after one of the plugin properties has
been changed for this instance. For link properties,
this is where you can perform your link click action.
You can also clamp or adjust the property value
here (via this.properties[name]), and the property will
update accordingly.

IDEInstance.OnRendererInit(renderer)
Called when a layout is opened containing

Revision 2 Page 43/92

instances of your plugin. You should load any
textures or fonts here.

IDEInstance.OnRendererReleased(renderer)
Called when a layout containing instances of your
plugin is closed. You should release any textures or
fonts here.

IDEInstance.Draw(renderer)
Draw the object in the editor, if it is a "world" plugin
type. Otherwise, Draw() is not called.

The edittime instance
The IDEInstance object has an instance member
through which you can access information about the
instance in the editor. It supports these methods:

instance.SetSize(size)
Set the object's width and height according to the
cr.vector2 passed to size.

instance.GetSize()
Return a cr.vector2 with the width and height of the
object.

instance.SetHotspot(p)
Set the hotspot according to the cr.vector2 point p.
Hotspots are specified in texture coordinates, where
(0,0) is the top left corner of the object, and (1,1) the

Revision 2 Page 44/92

bottom right, and (0.5, 0.5) in the middle.

instance.GetBoundingRect()
Return a cr.rect object specifying the object's axis-
aligned bounding rectangle.

instance.GetBoundingQuad()
Return a cr.quad object specifying the object's
bounding quad.

instance.EditTexture()
Either pf_texture or pf_animations must be
specified. Invokes the image editor or animation
editor respectively.

instance.GetTexture()
Return an object representing the object's current
texture. If pf_animations is specified, this is a
texture representing the first frame in the first
animation.

instance.GetOpacity()
Return the object's current opacity, if it has one.

Edittime rendering
The OnRendererInit, Draw and OnRendererReleased
functions pass a renderer object as a parameter. It
supports these methods:

Revision 2 Page 45/92

renderer.Quad(q [, opacity, uv])
Render the quad q (a cr.quad) with the current
texture. opacity is optional, and uv can be a cr.rect
specifying the texture coordinates to draw.

renderer.Line(a, b, color)
Render a line with the current texture from a to b
(both cr.vector2 objects) with the specified color
(use cr.RGB(r, g, b) to generate a color).

renderer.Fill(q, color)
Fill the quad q (a cr.quad) with solid color (use
cr.RGB(r, g, b) to generate a color).

renderer.Outline(q, color)
Draw four lines outlining the quad q (a cr.quad) with
the given color (use cr.RGB(r, g, b) to generate a
color).

renderer.CreateFont(face_name, face_size, bold,italic)
Create a font object with the given parameters. Font
objects support the method:

font.DrawText(text, rc, color, halign)
where text is the text to draw, rc is a cr.rect of the
rectangle to draw the text inside, color is the text
color, and halign is one of ha_left, ha_center or
ha_right.

Revision 2 Page 46/92

renderer.ReleaseFont(font)
Release a previously created font.

renderer.LoadTexture(texture)
Load the object's texture. Use this in
OnRendererInit(). Pass the object's texture from
instance.GetTexture().

renderer.SetTexture(texture)
Set the texture currently drawing with.

renderer.ReleaseTexture(texture)
Release a previously loaded texture. Use this in
OnRendererReleased().

renderer.EnableTiling(enable)
Pass true to enable tiling textures, or false to
disable. Tiling allows uv coordinates greater than 1,
causing the texture to repeat.

Texture objects also support the following methods:

texture.GetImageSize()
Return a cr.vector2 representing the texture's width
and height in pixels (regardless of the object's
current size).

texture.GetFilename()
Return the current active filename of the texture.

Revision 2 Page 47/92

This may be in a temporary folder if the texture has
been edited but not saved.

texture.GetID()
Return an arbitrary string identifying this texture.

Revision 2 Page 48/92

RUNTIME
OVERVIEW

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-

documentation/runtime-overview

Unlike the edittime, the runtime runs in a browser. This
means you have access to all browser technologies,
ranging from WebSockets and AJAX to the Web
Audio API. Exciting stuff!

Strict mode
Runtime scripts must conform to the ECMAScript 5
"strict" mode. This helps reduce bugs and allow
javascript engines to run the script faster. To find out
more about Strict mode, see this blog post by John
Resig.

Object recycling
To reduce garbage collector overhead, Construct 2
recycles the javascript objects for instances when
objects are created and destroyed at runtime. For more
information, see onDestroy() in the next section.

jQuery

Revision 2 Page 49/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/runtime-overview
https://www.construct.net/out?u=http%253a%252f%252fejohn.org%252fblog%252fecmascript-5-strict-mode-json-and-more%252f

Construct 2's javascript runtime includes jQuery. All
plugins and behaviors may assume the presence of
jQuery 1.6.3 (or higher, if it is updated in future builds)
when they are running on a browser-based platform.
Note jQuery is not included with non-browser
platforms, which include CocoonJS and directCanvas.

It is preferable to access jQuery via the full name
(jQuery.foo()) rather than the short name ($.foo()) in
order to maintain compatibility with other scripts that
may be running in the page. For examples of using
jQuery, the Mouse and Keyboard plugins use jQuery
to detect input events.

You can find out more about jQuery at
http://jquery.org/.

Debugging
Most browsers report javascript errors silently. If your
plugin script contains an error, the browser will
probably ignore the entire script. This will then prompt
an assertion failure during preview similar to "Plugin
'FooBar' is not available". To see the error that caused
this, most browsers provide a javascript console. You
can find it in the browser menus, or one of the
keyboard shortcuts Ctrl+Shift+J, Ctrl+Shift+K, or F12
may work. Most major browsers also implement full
javascript debuggers (with breakpoints, watch, call
stack etc.) via the same console.

Revision 2 Page 50/92

https://www.construct.net/out?u=http%253a%252f%252fjquery.com%252f
https://www.construct.net/out?u=http%253a%252f%252fjquery.org%252f

Google Closure Compiler
compatibility
When exporting, Construct 2 gives the user the option
to 'Minify script'. This runs the common and runtime
scripts through Google Closure Compiler's
ADVANCED_OPTIMIZATIONS mode. This imposes
some limitations on what scripts can do. You must
obey these limitations when writing your plugins,
otherwise your plugin will be broken on export. More
details can be found on the Closure Compiler website.

The main thing is to always use dot syntax
(Object.property) rather than bracket syntax
(Object["property"]) in your own code. All properties
using dot syntax are changed by Closure Compiler, but
none of the properties in bracket syntax are changed.
Therefore, if you use Object.property in one place and
Object["property"] in another to access the same
property, the plugin will be broken on export. You may
still use bracket syntax (e.g. for a dictionary of user-
inputted strings) - just be aware of how Closure
Compiler will transform the code.

If you refer to external libraries, you must always use
bracket syntax (i.e. Object["property"]). If you use dot
syntax, Closure Compiler will rename the property and
it will access the wrong property of the external library
after export.

Remember the edittime scripts are not passed through

Revision 2 Page 51/92

https://www.construct.net/out?u=http%253a%252f%252fcode.google.com%252fclosure%252fcompiler%252fdocs%252fapi-tutorial3.html

Google Closure Compiler, so you can write them how
you like.

The Document Object Model
(DOM)
As with any javascript running in a browser, you can
modify and update the DOM. However, this is not
recommended in plugins and behaviors for three
reasons:

With careful consideration to the above three points,
you could still try experimenting with DOM features in
plugins.

Construct 2's exported projects are intended to be
totally self-contained. Ideally the canvas is the only
page element affected by the script.

1

Any DOM elements you change may not be present
on some pages, or may be present but intended for a
different purpose on other pages. Therefore modifying
DOM elements can break compatibility with some
pages.

2

Non-browser platforms like CocoonJS do not have a
DOM, so your plugin will most likely not work on these
platforms.

3

Revision 2 Page 52/92

https://www.construct.net/out?u=https%253a%252f%252fdeveloper.mozilla.org%252fen%252fDOM

RUNTIME
FUNCTIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-

documentation/runtime-functions

First of all, in runtime.js there are two places you must
change to insert your plugin ID. Assuming the script is
unmodified, these are on lines 9 and 16:

 // line 9
 cr.plugins_.MyPluginID = function(runtime)
 // ...
 // line 16
 var pluginProto = cr.plugins_.MyPluginID.prototype;

In both cases you must replace MyPluginID with the
plugin ID you specified in edittime.js. Remember to
note that the ID must be unique to your plugin, and
must not change after release (else all existing projects
will break).

Classes
The first part of the script fairly straightforwardly
defines three classes: the Plugin class, the Type class,
and the Instance class. These represent the plugin, an
object type, and an instance of an object type

Revision 2 Page 53/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/runtime-functions

respectively. For example, "Sprite" is a kind of plugin.
"Ogre", "Monster" and "Troll" may be three object
types in a game, based on the Sprite plugin. In the
layout there may be one Ogre, three Monsters and five
Trolls - these are the instances of the object types.
There is only ever one Plugin class instantiated for a
project, and if your plugin flags specify
pf_singleglobal, there is also only ever one object type
and one instance.

You can store whatever you like in each class as
necessary, but note you must not remove the runtime
required members (e.g. references back to the runtime
or plugin). You may also extend the prototypes of each
with your own functions.

onCreate()
Each plugin, type and instance class has an onCreate
method. These are called after Construct 2 has added
any of its own properties to the objects. The object
creation always goes:

constructor -> add Construct 2's properties ->
onCreate()

For example, the runtime adds the x, y, width and
height properties to world instances. These are not yet
added in the constructor, but can be accessed in
onCreate(). After onCreate(), your object is sealed by
the runtime (see Object sealing in Runtime overview).

Revision 2 Page 54/92

onDestroy() and object recycling
To reduce garbage collector overhead, Construct 2
often recycles instance objects (for both plugins and
behaviors). This means the instance constructor may
be re-called on a previous instance of your object,
rather than a new empty javascript object. You should
be aware of this - especially the fact the previous
instance has already been sealed - when designing
plugins and behaviors. You can also take advantage of
it to help reduce garbage collector overhead, for
example by testing for the existence of members in the
constructor and re-using them where possible.

When your instance is destroyed at runtime, Construct
2 calls the instance's onDestroy() method if it has one.
However, the object is likely still referenced in the
cache for object recycling. This creates a possible
problem in that even after being destroyed, the
instance still exists. To save memory, you should
release references to any large arrays or objects in
onDestroy(). Further, you must release references to
other objects in the runtime in onDestroy(), otherwise
you may have dangling reference bugs. For example,
the Platform behavior stores a reference to the last
floor object the player landed on. This reference is set
to null in onDestroy().

draw(ctx) and drawGL(glw)
If your instances appear in the layout, they need to

Revision 2 Page 55/92

draw themselves. The draw method has a canvas 2D
context as a parameter. This context has already been
translated and scaled as necessary - you simply need
to draw your instance according to its x, y, width,
height etc. members. The drawGL method is used
when WebGL is enabled. Instead of passing the low-
level WebGL context itself, a wrapper class is passed -
see GLWrap.js in the install directory for a list of
methods, or see how the built-in plugins draw in
WebGL mode. You should make sure your plugin
draws identically in both Canvas 2D and WebGL
mode.

If any of your plugins actions or other functions cause
a change in the rendering, you must set

 this.runtime.redraw = true;

The canvas does not automatically draw every tick. Do
not set the flag if the change has no effect on
rendering, since this will trigger a wasteful redraw.

Bounding boxes
If you change an object's size, position or angle, its
axis-aligned bounding box changes. You must indicate
this to Construct 2 by following with a call to

 instance.set_bbox_changed();

If you do not call this, you will cause bugs where
Revision 2 Page 56/92

objects do not collide properly, disappear near the edge
of the screen, and so on. Try not to forget this. It must
be called immediately following any changes. Example:

 instance.x += 1;
 instance.y += 1;
 instance.set_bbox_changed();

Revision 2 Page 57/92

ACE
IMPLEMENTATIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-documentation/ace-

implementations

Actions, conditions and expressions (ACE or ACEs)
defined in edittime.js must each have a corresponding
runtime method. In the runtime script you'll find objects
named Cnds, Acts and Exps, which you must add your
methods to like so:

 Cnds.prototype.MyCondition = function(...

where MyCondition is the script name from edittime.js.
See the edittime documentation on ACEs for more - it
also covers how to write the runtime functions. You
must remember to use dot syntax - see the section on
Google Closure Compiler compatibility for more.

Implementing conditions
There are four kinds of condition:

Ordinary conditions
These are the default. They are evaluated once per
tick (or whenever the event is run). The method is
called once for each instance, returning true or

Revision 2 Page 58/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/ace-implementations

false, thus filtering instances meeting the condition.
Conditions specifying cf_faketrigger are still
ordinary conditions.

Trigger conditions
These specify cf_trigger (not cf_faketrigger). These
are not run every tick: they only ever run when
explicitly called by runtime.trigger(). This is useful
for input events and other on-the-spot events.

Static conditions
These specify cf_static. Ordinary conditions are
called once for each instance. Static conditions are
only ever called once no matter how many
instances there are. You must pick the necessary
instances in the condition method. For example,
'Pick random object' is most easily implemented as a
static condition.

Looping conditions
These are actually ordinary conditions, but are
implemented in such a way that they repeat. The
cf_looping flag should be set, but this does not
affect any functionality. Instead, the method must
'retrigger' the event (calling event.retrigger()) which
runs the remaining conditions then actions and
subevents, then returns to your condition again. The
event should be retriggered once per loop iteration,
then the actual condition method must return false -
otherwise Construct 2 will carry on and run the

Revision 2 Page 59/92

event one more time. A good example of a looping
condition is Array's For each element condition.

Implementing actions
Actions are usually the easiest to implement. They do
not need to return anything. Just perform the action!

Note you may not affect any of the picked objects in an
action (via the SOL methods), except for any objects
passed in object parameters.

Implementing expressions
The most common thing to forget in expressions is the
first parameter must be ret! The expression returns its
value through this rather than by returning from the
javascript function itself. Any actual expression
parameters follow after ret.

Other than that, expressions are also straightforward to
implement. The following ret methods are used to
return a value:

 ret.set_int(0); // return an integer
 ret.set_float(0); // return a float
 ret.set_string(""); // return a string
 ret.set_any(0); // return a float or string, depending on the
 javascript type of the parameter

Reference
Revision 2 Page 60/92

You may use any browser APIs you like in a plugin.
That's generally what makes plugins useful! It is best
to keep plugins focused, and expose a single API or
feature through a single plugin. As described in the
overview, the Mozilla Developer Network is a good
place to get an overview of browser features and APIs.

The rest of the documentation covers the reference for
Construct 2's javascript runtime. These methods may
be interesting to you so your plugin can integrate
seamlessly with the way Construct 2 works.

Some parts of the runtime are undocumented. This is
usually for a reason: it is not advised that plugins use
them, since it will cause bugs. Therefore, you should
only use the documented parts, in the manner that the
documentation states is valid. The fact javascript does
not provide encapsulation (public and private like other
languages) is not permission to use the "internal" parts
of the runtime.

Revision 2 Page 61/92

https://www.construct.net/out?u=https%253a%252f%252fdeveloper.mozilla.org%252f

CREATING A
.C2ADDON
PACKAGE

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-

documentation/c2addon-packages

The .c2addon file format allows plugin, behavior and
effect developers to easily package their addon in to a
single file. Users can then drag and drop the file in to
the Construct 2 window to install it.

A .c2addon file is actually a zip file with a renamed
extension. The zip file always contains info.xml in the
root, and a subfolder called files. What goes in the files
folder depends on whether you're publishing a plugin,
behavior or effect.

info.xml
The info.xml file specifies metadata about your addon.
It states whether the type is a plugin, behavior or
effect, and has information like the name, version and
author of the addon. Use the info.xml provided in the
Javascript SDK as a starting point, and from there it
should be straightforward to fill out. Be sure to write
documentation and add the link to the documentation

Revision 2 Page 62/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-documentation/c2addon-packages

to info.xml. You can also find a template of info.xml
here.

Plugin and behavior files
When distributing a plugin or behavior, the files
subfolder needs to contain another subfolder. For
example your folder structure in the zip would be:

info.xml
files\myplugin\common.js
files\myplugin\edittime.js
files\myplugin\PluginIcon.ico
files\myplugin\runtime.js

myplugin is the name of the plugin or behavior folder,
as it should appear in the install directory. Construct 2
will simply copy and paste this entire folder, preserving
the folder name.

Effect files
When distributing an effect, simply place the .fx file
and .xml file for the effect in the files subfolder in the
zip, for example:

info.xml
files\myeffect.fx
files\myeffect.xml

Packaging
Revision 2 Page 63/92

https://www.scirra.com/labs/info.xml

Add all the files to a zip (right-click and 'Send to
compressed (zipped) folder' in Windows Explorer). Be
sure not to accidentally create a root level subfolder in
the zip which itself contains info.xml - that will be
rejected by Construct 2. Once zipped, rename the file
so the extension is .c2addon rather than .zip. Test it by
dragging and dropping the file in to the Construct 2
window. If you can install after the prompt successfully,
your file is ready to distribute.

Samples
Here are some sample .c2addon packages for an
example plugin, behavior and effect. To inspect the
contents, rename them to .zip and open them.

myplugin.c2addon

mybehavior.c2addon

myeffect.c2addon

Revision 2 Page 64/92

http://www.scirra.com/labs/myplugin.c2addon
http://www.scirra.com/labs/mybehavior.c2addon
http://www.scirra.com/labs/myeffect.c2addon

SDK REFERENCE
View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference

This section provides a reference of some of the
functions available to the SDK.

Revision 2 Page 65/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference

RUNTIME
REFERENCE

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference/runtime

The runtime object represents a single instance of a
user's project running in the browser. It is usually
accessed via this.runtime from an object instance.
Remember only documented properties and methods
should be used.

Runtime properties

runtime.canvas (read-only)
The canvas element in the page the project is
running on.

runtime.width (read-only)
runtime.height (read-only)

The size of the canvas element in the page. This
can change at runtime if Fullscreen in browser is
enabled and the user resizes the browser window.

runtime.redraw (write-only)
This must be set to true whenever anything is done
that affects how the project is rendered. If redraw
remains false, the canvas is assumed not to have

Revision 2 Page 66/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/runtime

changed and will not be redrawn.

runtime.plugins[]
An array of all the plugins used in the project.

runtime.types_by_index[]
An array of all the object types in the project.

runtime.layouts_by_index[]
An array of all the layouts in the project.

runtime.eventsheets_by_index[]
An array of all the event sheets in the project.

runtime.wait_for_textures[] (write-only)
Add a HTML Image() class to this array during
loading, and the loader will wait for it to finish
downloading before starting the runtime. See Tiled
Background for an example.

runtime.timescale
The current time scale.

runtime.kahanTime.sum (read-only)
The current in-game time, in seconds, with
timescaling applied.

runtime.tickcount
The number of ticks elapsed since the start of the
game.

Revision 2 Page 67/92

runtime.changelayout (write-only)
Set to a reference to a layout object and the
following tick the runtime will execute Go to layout
on that layout.

runtime.running_layout (read-only)
A reference to the current layout that is running.

runtime.files_subfolder (read-only)
The subfolder where project files are held.

runtime.extra
The runtime is sealed. You may store any additional
properties you need in this object.

runtime.start_time (read-only)
Set to date.getTime() on starting the first layout.

Runtime functions

runtime.tickMe(this)
Call to have the runtime call tick() on your plugin
instance. You must define a tick() method in the
instance's prototype. Note: behaviors are
automatically ticked.

runtime.getDt(this)
Return delta-time, in seconds, with time scaling
applied. You must pass an instance to get dt for, to

Revision 2 Page 68/92

maintain compatibility with the Set object timescale
feature.

runtime.addDestroyCallback(f)
Calls f(inst) whenever an instance is destroyed.

runtime.DestroyInstance(inst)
Destroys the given instance.

runtime.createInstance(type, layer)
Create a new instance of the object type on the
given layer. Returns a reference to the created
instance.

runtime.getLayerByName(name)
Get a layer by name, case insensitive, or null if not
found.

runtime.getLayerByNumber(index)
Get a layer by zero-based index, or null if out of
bounds.

runtime.testAndSelectCanvasPointOverlap(type,x, y, inverted)
Pick any instances of type that overlap the point (x,
y) in canvas co-ordinates. Pass the condition's
inverted state for correct behavior. See the Mouse
object for an example.

runtime.testOverlap(a, b)
Return true if the two given instances are

Revision 2 Page 69/92

overlapping.

runtime.testOverlapSolid(inst)
Returns an instance with the Solid attribute if inst is
overlapping a solid, else null.

runtime.pushOutSolid(inst, xdir, ydir, dist)
Pushes inst the distance given by xdir and ydir up
to dist, until inst is not overlapping any solid. If inst
finishes overlapping a solid, it is put back to its
original position and false is returned. Otherwise,
true is returned.

runtime.pushOutSolidNearest(inst, max_dist)
Pushes inst in an 8-direction spiral pattern up to
max_dist pixels away until it is no longer overlapping
a solid. If inst is still overlapping a solid by max_dist,
it is returned to its original position and false is
returned. Otherwise, true is returned.

runtime.trigger(method, inst)
Trigger the condition specified by method, with the
object inst triggering. The condition must specify
cf_trigger and not cf_faketrigger. If triggering your
own plugin's trigger, pass this for inst. method must
specify the plugin routine in the form:

cr.plugins_.MyPluginID.prototype.cnds.MyTrigger
e.g.:

Revision 2 Page 70/92

cr.plugins_.Mouse.prototype.cnds.OnClick

runtime.getCurrentCondition()
Returns the current condition. Only valid in
condition methods.

runtime.getCurrentAction()
Returns the current action. Only valid in action
methods.

runtime.getCurrentEventStack()
Return the current event "stack frame". This can be
used to determine the current event via
runtime.getCurrentEventStack().current_event.

Revision 2 Page 71/92

LAYOUT
FUNCTIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference/layout

A layout represents a layout in the project at runtime.
Only one layout can be running at a time.

Layout properties

layout.runtime
A reference back to the runtime.

layout.event_sheet
A reference to the layout's event sheet, or null if it
does not have one.

layout.name
The layout's name.

layout.width
layout.height

The size of the layout, in pixels.

layout.unbounded_scrolling
A boolean indicating the 'unbounded scrolling'
setting.

Revision 2 Page 72/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/layout

layout.layers[]
An array of layers on the layout.

Layout functions

layout.scrollToX(x)
layout.scrollToY(y)

Scroll the layout to the given coordinates.

Revision 2 Page 73/92

LAYER
FUNCTIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference/layer

Layouts consist of multiple layers. All layout objects
belong to a layer.

Layer properties

layer.layout
A reference back to the layout the layer is on.

layer.runtime
A reference back to the runtime.

layer.scale
The current layer scale.

layer.viewLeft
layer.viewRight
layer.viewTop
layer.viewBottom

Defines the rectangle of the currently visible
viewport. This may be larger or smaller than the
canvas size if the scale is not 1.0.

Revision 2 Page 74/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/layer

layer.name
The layer name.

layer.index
The zero-based layer index.

layer.visible
A boolean indicating if the layer is currently visible.

layer.background_color
The layer's background color, as an array in the
format [r, g, b, a]. Ignored if the layer is transparent.

layer.transparent
A boolean indicating if the layer is transparent.

layer.parallaxX
layer.parallaxY

The layer's parallax rate for the X and Y axes.

layer.opacity
The layer's opacity, from 0 (transparent) to 1
(opaque).

layer.forceOwnTexture
A boolean indicating the Force own texture setting.

layer.instances[]
An array of all the object instances (of any object

Revision 2 Page 75/92

type) currently on this layer.

Layer functions

layer.canvasToLayerX(x)
layer.canvasToLayerY(y)

Convert from canvas coordinates to layer
coordinates. Useful for converting e.g. mouse co-
ordinates to layer co-ordinates. See Mouse for an
example.

Revision 2 Page 76/92

OBJECT TYPE
FUNCTIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference/object-

type

See Classes in Runtime functions for a description of
plugins vs. object types vs. instances. Since SOLs
(selected object lists) are based on object types, these
are also documented below.

Object type properties

type.plugin
A reference to the plugin the object type is from.

type.texture_file
Only valid when pf_texture is specified. The
filename of the texture PNG file.

type.texture_filesize
Only valid when pf_texture is specified. The file size
of the texture PNG file, generally used to aid the
progress bar accuracy.

type.animations
Only valid when pf_animations is specified. Stores

Revision 2 Page 77/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/object-type

the object animations. See Sprite for an example.

type.index
The zero-based index of the object type in the
runtime's types_by_index array.

type.instances[]
Array of all the currently created instances of this
object type.

type.behaviors[]
Array of all the behaviors added to this object type.

#Object type functions#

type.getFirstPicked()
Return the first instance of this type. If in an event,
this returns the first picked instance, otherwise the
first instance in the instances array. Returns null if
no instances exist or are picked.

type.getPairedInstance(inst)
inst must be from another object type. Return the
instance of this object type that corresponds to inst.

type.getCurrentSol()
Returns the current SOL object. See below.

The SOL
Revision 2 Page 78/92

The SOL (selected object list) is the list of all instances
currently matching the event. Conditions filter
instances matching the condition from the full instance
list. In an action, condition or expression, you may wish
to access this list (e.g. for static conditions).
getCurrentSol() on the object type returns its SOL
object, which is documented here.

Remember you must not modify the SOL for any
object types other than:

the current object type in a condition, or

any object type passed in an object parameter.

You may have read-only access to all other SOLs,
though.

SOL properties

sol.type
Reference to the object type the SOL is for.

sol.instances[]
Array of the instances currently matching the event.
If sol.select_all is true, this is ignored and may have
undefined contents (e.g. arbitrary instances left over
from a previous event). Therefore, only use this
when sol.select_all is false.

sol.select_all
If true, this specifies that sol.instances must be

Revision 2 Page 79/92

ignored and sol.type.instances used (the list of all
instances). If false, this indicates the contents of
sol.instances is the current selection. If setting from
true to false, you must clear sol.instances and fill it
with your intended content.

SOL functions

sol.hasObjects()
Returns true if the object type has at least one
instance and select_all is true, or if the SOL
instances array is not empty and select_all is false,
else false.

sol.getObjects()
Returns a reference to the current array of
instances. If select_all is true, this is the type's array
of all instances. If false, this is the SOL's current
instances list.

sol.pick(inst)
If select_all is true, sets it to false and picks inst.
Otherwise, ensures inst is in the SOL instances
array. Note: avoid this function where possible,
since it runs in O(n) time and will be slow for large
projects.

Revision 2 Page 80/92

INSTANCE
FUNCTIONS

View online: https://www.construct.net/en/construct-
2/manuals/construct-2-javascript-sdk/sdk-reference/instances

Instances are generally plugin-defined. You should
read the sources of a plugin to see how it is
implemented. However, Construct 2 guarantees the
presence of certain properties and functions. These
common properties and functions are documented
here. Note any properties or functions relating to
objects in a layout (e.g. x, y) are not present in non-
layout objects.

Common instance properties

inst.type
Reference to the instance's object type.

inst.uid (read-only)
The instance's unique ID. Construct 2 issues the
first instance a UID of 0 and increments by 1 for
each new instance created. UIDs must never
change through the life of an object.

inst.instance_vars[]
Array of instance variables. Each element is an

Revision 2 Page 81/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/instances

ordinary javascript value corresponding to the
current value of the instance variable at that index.

inst.x
inst.y

The current position of the instance in the layer. If
changed, you must call inst.set_bbox_changed().

inst.width
inst.height

The current size of the instance, in pixels. If
changed, you must call inst.set_bbox_changed().

inst.angle
The current object angle, in radians. Not all objects
support an angle, e.g. Text object. If changed, you
must call inst.set_bbox_changed().

inst.opacity
The current object opacity, from 0 (transparent) to 1
(opaque). Not all objects use the opacity.

inst.hotspotX
inst.hotspotY

Current position of the hotspot, in texture co-
ordinates (e.g. (0.5, 0.5) will be a centered hotspot).

inst.bbox
A cr.rect representing the instance's axis aligned
bounding box. You must call inst.update_bbox()

Revision 2 Page 82/92

before using this property.

inst.bquad
A cr.quad representing the instance's bounding
quad. You must call inst.update_bbox() before using
this property.

inst.visible
A boolean indicating if the object is currently visible.

inst.layer
A reference to the layer the object is on, if a world
object.

inst.behavior_insts[]
Array of instances of each behavior added to the
object type.

inst.inst
In behavior instances only: this is the reference to
the object instance your behavior should modify.

Common instance functions

inst.set_bbox_changed()
You must call this to indicate to Construct 2 that the
object's bounding box has changed, after modifying
the x, y, width, height or angle properties.

inst.update_bbox()
Revision 2 Page 83/92

You must call this before accessing the bbox or
bquad members of an instance. Otherwise, their
values will be invalid.

inst.add_bbox_changed_callback(f)
Calls f(inst) whenever set_bbox_changed() is called
on inst. Warning: this can cause a large
performance overhead, so use with care.

inst.get_iid()
Get the Instance ID (IID). This is the zero-based
index in the object type's instances array where this
instance is located. Note: you must use this function
to get the IID, since IIDs are lazily assigned.

inst.toString()
Overridden to return a string in the format
"inst:Type[#]uid" e.g. "inst:Player[#]0".

Revision 2 Page 84/92

CR FUNCTIONS
View online: https://www.construct.net/en/construct-

2/manuals/construct-2-javascript-sdk/sdk-reference/cr-
functions

In the rest of the documentation, you may have noticed
references to cr.vector2 or cr.rect. These, and some
other common functions, are declared in
common_prelude.js. Like the rest of the runtime, they
are in the cr namespace (for Construct Runtime). This
section documents these classes and functions.

cr.vector2
cr.vector2 is a simple x,y position (also usable as a
size). Create with: new cr.vector2(x, y)

Since r52, it is not recommended to use cr.vector2 in
runtime scripts. The use of many temporary vector2s
creates a lot of garbage collector overhead which can
cause poor performance in some browsers. Prefer to
directly manipulate separate x and y javascript
numbers instead.

cr.vector2.x
cr.vector2.y

The x and y co-ordinates of the vector./dd]
cr.vector2.offset(x, y)
Vector addition. Modifies the vector2 offset() is

Revision 2 Page 85/92

https://www.construct.net/en/construct-2/manuals/construct-2-javascript-sdk/sdk-reference/cr-functions

called on.

cr.vector2.mul(x, y)
Vector multiplication. Modifies the vector2 mul() is
called on.

cr.rect
cr.rect is a simple 2D rectangle. It is implicitly axis-
aligned. Create with: new cr.rect(left, top, right, bottom)

Creating many rect objects can result in garbage
collector overhead causing poor performance. Re-use
existing rect objects wherever possible.

cr.rect.left
cr.rect.top
cr.rect.right
cr.rect.bottom

Defines the position of the rectangle.

cr.rect.set(left, top, right, bottom)
Convenience function to set each member in one
call.

cr.rect.width()
cr.rect.height()

Return the size of the rectangle.

cr.rect.offset(x, y)
Offset the rectangle by the given x and y co-

Revision 2 Page 86/92

ordinates.

cr.rect.intersects_rect(rc)
Test if the rectangle intersects another cr.rect.

cr.rect.contains_pt(x, y)
Test if the point lies inside or on the border of the
rect.

cr.quad
A quad is simply four 2D points that form a four-sided
shape. Unlike cr.rect, quads can represent rectangles
at any angle (non-axis-aligned). Quads do not have to
store a rectangle - each of the four points can have
any position at all - but in the runtime, they are always
used for the purpose of rotated rectangles.

Create a quad with: new cr.quad()

cr.quad.tlx
cr.quad.tly
cr.quad.trx
cr.quad.try_ (note underscore to avoid "try"keyword)
cr.quad.brx
cr.quad.bry
cr.quad.blx
cr.quad.bly

The co-ordinates of the four points making up the
quad. The terms tl, tr, br and bl refer to "top left",

Revision 2 Page 87/92

"top right", "bottom right" and "bottom left"
respectively (which correspond to their positions
when representing an unrotated rectangle).

cr.quad.set_from_rect(rc)
Set the quad points to represent a shape that is
identical to the given

cr.rect
object.

cr.quad.set_from_rotated_rect(rc, a)
Set the quad points to represent a cr.rect rotated by
a radians.

cr.quad.offset(x, y)
Offset the quad by a point.

cr.quad.bounding_box(rc)
Set the cr.rect rc to a rect representing the axis-
aligned bounding box of the quad.

cr.quad.contains_pt(x, y)
Test if the point lies inside the quad.

cr.quad.intersects_quad(q)
Test if the quad intersects another cr.quad.

cr.ObjectSet
Revision 2 Page 88/92

An object set represents a mathematical set of
javascript objects, i.e. each object can only be stored
once or not at all, never twice. Adding an object to an
ObjectSet that already contains it has no effect. The
ObjectSet uses the .toString() method to distinguish
objects, so any objects stord in the ObjectSet must
have an appropriate overload that uniquely identifies it.
Since the underlying container is a javascript object,
performance is better than using an array and lookups
to store unique objects.

Create a new ObjectSet with: new cr.ObjectSet()

cr.ObjectSet.contains(x)
Test if the set contains object x.

cr.ObjectSet.add(x)
Add the object x to the set if not already present,
else no effect.

cr.ObjectSet.remove(x)
Remove the object x from the set if present, else no
effect.

cr.ObjectSet.clear()
Remove all objects from the set, returning it to an
empty state.

cr.ObjectSet.isEmpty()
Returns true if the object set is in an empty state.

Revision 2 Page 89/92

cr.ObjectSet.count()
Return the number of objects stored in the set.

cr.ObjectSet.valuesRef()
Return a read-only reference to the javascript array
containing all the objects in the set. This is faster
than values().

cr.ObjectSet.values()
Return an array containing a copy of all the objects
in the set. Since it returns a copy, the result can be
modified.

Utility functions
The following functions are not all related, but are often
useful.

cr.RGB(red, green, blue)
Generate a color value. Useful for color parameters.

cr.arrayRemove(arr, index)
Modify the array parameter arr to remove the
element at index.

cr.arrayFindRemove(arr, item)
Modify th array parameter arr to remove the element
equal to item.

cr.clamp(x, a, b)
Revision 2 Page 90/92

Return x, or a if x is lower than a, or b if x is greater
than b.

cr.to_radians(a)
Return a converted from degrees to radians.

cr.to_degrees(a)
Return a converted from radians to degrees.

cr.clamp_angle_degrees(a)
Return a wrapped in to the range [0, 360)

cr.to_clamped_degrees(a)
Return a converted from radians to degrees and
wrapped in to the range [0, 360).

cr.to_clamped_radians(a)
Return a converted from degrees to radians and
wrapped in to the range [0, 2pi).

cr.angleDiff(a1, a2)
Return the smallest angle, in radians, between a1
and a2.

cr.angleRotate(start, end, step)
Return start rotated towards end by step radians.

cr.angleClockwise(a1, a2)
Return true if a2 is clockwise of a1 (in radians) by
the smallest angle.

Revision 2 Page 91/92

cr.xor(x, y)
Return logical XOR of x and y (javascript has no
native operator for this).

cr.lerp(a, b, x)
Linearly interpolate a to b by x.

cr.segments_intersect(a1x, a1y, a2x, a2y, b1x,b1y, b2x, b2y)
Test if the line a1 to a2 intersects the line b1 to b2.

cr.seal(o)
Seal the object o. If ECMAScript 5 is not supported,
has no effect.

cr.freeze(o)
Freeze the object o. If EXMAScript 5 is not
supported, has no effect.

Revision 2 Page 92/92

	CONSTRUCT 2 JAVASCRIPT SDK DOCUMENTATION
	Uses for the Javascript SDK
	Developer mode for previewing

	JAVASCRIPT SDK FOR CONSTRUCT 2
	OVERVIEW OF THE CONSTRUCT 2 SDK
	Overview of plugins and behaviors
	Plugin scripts
	Good luck!

	PLUGIN SETTINGS
	Changes after publishing

	ACTIONS, CONDITIONS AND EXPRESSIONS
	Parameters
	Adding conditions
	Adding actions
	Adding expressions
	Finishing up
	Implementing the runtime functions

	PROPERTIES
	Getting property values at runtime

	THE EDIT-TIME
	Global functions
	The edittime instance
	Edittime rendering

	RUNTIME OVERVIEW
	Strict mode
	Object recycling
	jQuery
	Debugging
	Google Closure Compiler compatibility
	The Document Object Model (DOM)

	RUNTIME FUNCTIONS
	Classes
	onCreate()
	onDestroy() and object recycling
	draw(ctx) and drawGL(glw)
	Bounding boxes

	ACE IMPLEMENTATIONS
	Implementing conditions
	Implementing actions
	Implementing expressions
	Reference

	CREATING A .C2ADDON PACKAGE
	info.xml
	Plugin and behavior files
	Effect files
	Packaging
	Samples

	SDK REFERENCE
	RUNTIME REFERENCE
	Runtime properties
	Runtime functions

	LAYOUT FUNCTIONS
	Layout properties
	Layout functions

	LAYER FUNCTIONS
	Layer properties
	Layer functions

	OBJECT TYPE FUNCTIONS
	Object type properties
	The SOL
	SOL properties
	SOL functions

	INSTANCE FUNCTIONS
	Common instance properties
	Common instance functions

	CR FUNCTIONS
	cr.vector2
	cr.rect
	cr.quad
	cr.ObjectSet
	Utility functions

